设随机变量X1,X2,……,Xn(n>1)独立分布,且方差σ2>0,记,则与X1的相关系数为()。
A: -1
B: O
C:
D: 1
A: -1
B: O
C:
D: 1
举一反三
- 设总体X~N(μ,1).x1,x2,…,xn为样本,则统计为
- 若x1=2^(1/2),x2={2^(1/2)+2}^(1/2),.,x(n+!)=(2+xn)^(1/2),n=(1,2,.)求极限xn
- 设X1,X2,…,Xn是来自总体X的样本,X~E(λ),X ̅为X1,X2,…,Xn的样本均值,则1/D(X ̅)=_________。
- 设总体的分布律为P{X=x)=Cmxpx(1—p)1—x,x=0,1,…,m,(X1,X2,…,Xn)是来自该总体的样本,试写出(X1,X2,…,Xn)的分布律.
- 设X1,X2,,,Xn相互独立且都服从N(μ,σ^2),则下列成立的是()? A: X1=X2=...=Xn B: 1/n(X1+X2+...+Xn)~N{μ,(σ^2)/n} C: 2X1+3~N(2μ+3,4σ^2+3) D: X1-X2~N{0,(σ1)^2-(σ2)^2}