• 2022-05-30
    设X1,X2,,,Xn相互独立且都服从N(μ,σ^2),则下列成立的是()?
    A: X1=X2=...=Xn
    B: 1/n(X1+X2+...+Xn)~N{μ,(σ^2)/n}
    C: 2X1+3~N(2μ+3,4σ^2+3)
    D: X1-X2~N{0,(σ1)^2-(σ2)^2}
  • B

    内容

    • 0

      将\(f(x) = {1 \over {2 - x}}\)展开成\(x \)的幂级数为( )。 A: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(( - 2,2)\) B: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(\left( { - 2,2} \right]\) C: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(( - 2,2)\) D: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(\left( { - 2,2} \right]\)

    • 1

      设随机变量X和Y相互独立且X~N(0,1),Y~N(1,1),则( ). A: P{X + Y £ 0} = 1/2 B: P{X + Y £ 1} = 1/2 C: P{X - Y £ 0} = 1/2 D: P{X - Y £ 1} = 1/2

    • 2

      \( {1 \over {1 + x}} \)的麦克劳林公式为( )。 A: \( {1 \over {1 + x}} = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \) B: \( {1 \over {1 + x}} = 1 + x + {x^2} + \cdots + {x^n} + o\left( { { x^n}} \right) \) C: \( {1 \over {1 + x}} = 1 - x + {x^2} - \cdots + {( - 1)^n}{x^n} + o\left( { { x^n}} \right) \) D: \( {1 \over {1 + x}} = 1 - x - { { {x^2}} \over 2}- \cdots - { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)

    • 3

      求函数 f(x)=3*x1^2 + 2*x1*x2 + x2^2 − 4*x1 + 5*x2. 时,输入代码 >>fun = @(x)3*x(1)^2 + 2*x(1)*x(2) + x(2)^2 - 4*x(1) + 5*x(2); >>x0 = [1,1]; >>[x,fval] = fminunc(fun,x0); 到matlab上运行一下,得到的结果,x是:

    • 4

      设X~N(0,1),则P(-1≤X<2)=()。 A: φ(2)-φ(1) B: φ(2)-φ(-1) C: φ(2)+φ(1)-1 D: 2-φ(1)-φ(2)