在有界闭集上连续的复变函数一定在上有界c34816c32f054869ae2b86c8ea3f9714.gif746b516c2721cac5c2953ea13965578e.gifc34816c32f054869ae2b86c8ea3f9714.gif
举一反三
- 在有界闭集上连续的复变函数一定在上有界
- 有界闭集D上连续的复变函数f不满足下列哪条性质?
- 设f(x)=x2+bx+c且f(0)=f(2),则( ) A: f(-2)<c<f(32) B: f(32)<c<f(-2) C: f(32)<f(-2)<c D: c<f(32)<f(-2)
- 若二元函数z=f(x,y)在有界闭区域D上连续,则下列结论正确的是 ( ) A: 函数z=f(x,y)在有界闭区域D上有界 B: 函数z=f(x,y)在有界闭区域D上有最小值 C: 函数z=f(x,y)在有界闭区域D上有最大值 D: 对于函数z=f(x,y)在有界闭区域D上的最小值与最大值之间的任意常数都是可达(即可取得该值)
- 函数f在闭区间[a,b]上连续,则f在该区间上有界