• 2022-06-29
    已知\(L\)为沿上半圆周 \({x^2} + {y^2} = 2x\)从点 \((0,0)\)到点 \((1,1)\)的一段弧,把对坐标的曲线积分 \(\int_{\;L} {P(x,y)dx + Q(x,y)dy} \),化成对弧长的曲线积分为\(\int_{\;L} {[\sqrt {2x - {x^2}} P(x,y) + (1 - x)Q(x,y)]} ds\) 。
  • 错误

    内容

    • 0

      \(L\)是从点\((1,1)\) 到点\((4,2)\) 的直线段,对坐标的曲线积分\(\int_L {(x + y)dx + (y - x)dy = } \) ______ 。

    • 1

      曲线积分$$\int_{(0,0}^{(x,y)}(2x\cos y-y^2\sin x)dx+(2y\cos x-x^2\sin y)dy=$$ A: $y^2\cos x+x^2\cos y$ B: $x^2\cos x+y^2\cos y$ C: $x^2\sin y+y^2\sin x$ D: $x^2\sin x+y^2\sin y$

    • 2

      计算对坐标的曲线积分∫(x^2-2xy)dx+(y^2-2xy)dy,其中C为抛物线y=x^2上对应于x=-1到x=1的一段弧,

    • 3

      计算\(\int_L {2xydx} + {x^2}dy\),其中\(L\) 是抛物线\(y = {x^2}\) 上从点\((0,0)\) 到点\((1,1)\) 的一段弧。 A: 0 B: 2 C: 1 D: 4

    • 4

      设随机变量X和Y相互独立且X~N(0,1),Y~N(1,1),则( ). A: P{X + Y £ 0} = 1/2 B: P{X + Y £ 1} = 1/2 C: P{X - Y £ 0} = 1/2 D: P{X - Y £ 1} = 1/2