拉格朗日乘子法是求解等式约束优化问题的另一种经典方法,它是通过减少变量将等式约束优化问题变成无约束优化问题。所以又称作升维法。
举一反三
- 求解非线性潮流的简化梯度法,先不考虑不等式约束,通过引入( ),可把有约束问题转化为无约束问题,从而把问题转化为等式约束问题求解,对于其不等式约束可引入( ),将有约束优化问题转化成一系列无约束最优化问题求解。 A: 拉格朗日乘子,罚函数乘子 B: 罚函数法,拉格朗日乘子 C: 拉格朗日乘子,拉格朗日乘子 D: 罚函数法,罚函数法
- 求解非线性潮流的简化梯度法,先不考虑不等式约束,通过引入(),可把有约束问题转化为无约束问题,从而把问题转化为等式约束问题求解,对于其不等式约束可引入(<br/>),将有约束优化问题转化成一系列无约束最优化问题求解。 A: 拉格朗日乘子,罚函数乘子 B: 罚函数法,拉格朗日乘子 C: 拉格朗日乘子,拉格朗日乘子 D: 罚函数法,罚函数法
- 最优化问题的分类有() A: 约束优化 B: 无约束优化 C: 等式约束条件 D: 半约束优化
- 罚函数法的基本思想是将约束最优化问题转化为无约束最优化问题再用为无约束最优化问题的方法求解。
- 约束优化方法的惩罚函数法法中,适合求解同时具有等式和不等式约束优化问题的方法有外点惩罚函数法和______