设 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 为正交阵,且 [tex=3.786x1.286]ih2JuJKPVdET8sqpksi8eQ==[/tex], 证明 [tex=3.071x1.286]z4LMMfVd1BB74L1Y0hoFBQ==[/tex] 是 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 的特征值.
举一反三
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正交矩阵,证明:(1)若[tex=3.786x1.286]Yjte1x6QwARCmSI7t/EPFw==[/tex],则[tex=1.214x1.286]WDa3CFFbujv+acHNTSW8sQ==[/tex]是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值;(2)若[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]为奇数,且[tex=3.071x1.286]xkU2A3eS3X9iYPOTvAVGkw==[/tex],则1是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值.
- 设 3 阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值互不相同,若行列式[tex=3.071x1.286]FYCnFYQQa8C3I+O2sfSSGA==[/tex], 则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩为 A: 0 B: 1 C: 2 D: 3
- 设矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]满足等式[tex=7.786x1.286]uIa4CKYcn6Y4+ZmCnKU+3SETI4n4S5mbHvfNHt7x/sg=[/tex], 试证明 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值只能取值 -1 或 4 。
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶方阵,且[tex=3.286x1.286]UYeZQ7ctQhujC8g1CvD2aw==[/tex],证明[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值只能是1或[tex=1.214x1.286]WDa3CFFbujv+acHNTSW8sQ==[/tex].
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶方阵,且[tex=3.214x1.286]Jp3NPd28HtxS6a0VDv55PA==[/tex],证明[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值只能是0或1.