利用 Householder 矩阵对矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]作正交相似变换,把矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]化为三对角矩阵,其中[br][/br][tex=10.643x4.786]/YGKh0J0WJuyVV8Zsv9KT05G33tXMS140AxcZwmB5yhzs5VzJ6NpJljkxARNxSLsvuMhTektbzOAVrr1GNr1H87Oxrp/7Et4uu+3XUk4/yjDxWyxp+gwkI+ON0PX4V7UTWGZsLXN5khtwo0p8cvyL+NTpsSey5k1uRdldugYWSU=[/tex]
举一反三
- 求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$
- 已知 3 阶矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为 0,-2,3,且矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]与[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]相似,则[tex=4.643x1.357]/AnguSGMpt5KutuBHaXS+w==[/tex][input=type:blank,size:4][/input]。
- 证明:如果实矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]正交相似于对角矩阵,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]一定是对称矩阵.
- 二阶实正规矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 不是对称矩阵, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是正交矩阵的充要条件是 未知类型:{'options': ['[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的行列式值等于 1', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的行列式值等于 -1', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是可逆矩阵', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是奇异矩阵'], 'type': 102}
- 求证: 若 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和对角矩阵 [tex=9.286x1.357]4hVOD4TWSI62OX9AhSJlcFT9/s8GpEqLGvCv8s+mV12qyqoqYS5txrxH/yqVh2LI[/tex] (或任意一个主对角元素互不相同的对角矩阵) 乘法可交换, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 必是对角矩阵; 若进一步 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 还和第一类初等矩阵可交换, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 必是数量矩阵 [tex=1.429x1.214]FxIjkBm1yL0dMFtX1spLfQ==[/tex] (由此可知, 矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是数量矩阵的充要条件是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和所有可逆矩阵可交换).