• 2022-06-14
    二阶实正规矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 不是对称矩阵, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是正交矩阵的充要条件是 
    未知类型:{'options': ['[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的行列式值等于 1', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的行列式值等于 -1', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是可逆矩阵', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是奇异矩阵'], 'type': 102}
  • A

    举一反三

    内容

    • 0

      设[tex=2.214x1.214]YsxUk3RpCEL54ROD5kt0RJo8Jg3PZ9YFvmPV4aO5za/jW8pAoxQ3l0yVPiczodW7[/tex]为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵,下列命题中正确的是 未知类型:{'options': ['若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 合同,则\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 相似\xa0', '若\xa0\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]\xa0相似,则\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]合同', '若\xa0\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]等价,则\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]\xa0合同\xa0', '若\xa0\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]\xa0合同,则\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]等价'], 'type': 102}

    • 1

      当 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 适合条件 (  ) 时,它必相似于对角阵. 未知类型:{'options': ['[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0有\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]\xa0个不同的特征向富', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是上二角矩阵', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0有\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]\xa0个不同的特征值', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是可逆矩阵'], 'type': 102}

    • 2

      下列条件不能保证 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为正定的是 未知类型:{'options': ['[tex=1.714x1.214]ehC1Fy05fIHTeRCJHyodYA==[/tex]\xa0正定', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的负惯性指数为零', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的正惯性指数等于\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0合同于单位矩阵'], 'type': 102}

    • 3

      设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称阵, 则 未知类型:{'options': ['[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的特征值的绝对值等于1', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0有\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]\xa0个不同的特征值', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的任意\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]\xa0个线性无关的特征向量两两正交', '存在正交矩阵\xa0[tex=0.857x1.0]3dL6VJHKHZnugLK8MQRDDg==[/tex], 使\xa0[tex=2.571x1.143]RvMNxxt784ax6BPwR+vlrx97TAmrzugQcbcsVRgnqt0=[/tex]\xa0为对角矩阵'], 'type': 102}

    • 4

      设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, 交换 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的第一、第二行后再交换第一、第二列, 所得矩阵为 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex], 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的特征值 未知类型:{'options': ['完全相同', '[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex][b]\xa0[/b]的特征值是\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0特征值的相反数', '[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]\xa0的特征值是\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0特征值的平方', '无一定关系'], 'type': 102}