3 个电子元件并联成一个系统,只有当 3 个元件损坏 2 个或 2 个以上时,系统便报废. 已知电子元件的寿命服从参数为 [tex=2.286x2.357]0hPg/fuQ3smtunOTGQyVng==[/tex] 的指数分布,求系统的寿命超过 1000 h 的概率.
举一反三
- 某种电子元件的寿命[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]是随机变量,概率密度为[tex=11.286x3.929]42FOdvHzW+r0Kf0R9f1sPAt0Ukzmb462CDlag77uSh6JSZvXpc/+ysSN+qVHylgvEX3vwdn8AeVBrw0Nk0F+plf4XUH6zkZ1N9DysA8zmgfu8Yb0+NoVIwppO9+LLUNp0vDKRXfccCtai1PvN9HyPA==[/tex]3 个这种元件串联在一个线路中. 计算这 3 个元件使用了 150 小时后仍能使线路正常工作的概率
- 仪器上有 3 个独立工作的元件,它们损坏的概率都是 0.1,仪器发生故障的概率当 1 个元件损坏时为 0.25; 当 2 个元件损坏时为 0.6 ; 当 3 个元件损坏时为 0.95. 求仪器发生故障的概率.
- 设电子元件的寿命时间 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] (单位: 小时) 服从参数 [tex=4.143x1.0]sCi5x95n/M0eDU+bkmAFhO0WP1baiMoqpf2mhtq2r1c=[/tex] 的指数分布,今独立测试 [tex=1.929x1.0]Ahmfdo6bCmnogYpp4NRgvg==[/tex] 个元件,记录它们的失效时间. 求:(1)没有元件在 800 小时之前失效的概率;(2)没有元件最后超过 3000 小时的概率.
- 设某一个设备装有3 个同类的电器元件,元件工作相互独立,且工作时间都服从参数为[tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex] 的指数分布.当3 个元件都正常工作时,设备才正常工作.试求设备正常工作时间[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex] 的概率分布.
- 一种元件的使用寿命为一随机变量[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex](小时),它的概率密度为[tex=12.571x3.929]0Oc6OdDyTxw5ASPscCgHyTW1iCPnTdHoiDk6F2ioqHe3SuduIx3zm0rcQY4ZamA1wBa3f4hG7Yp08pdJ0IuuyurjdUDO9PYmDQFISuD5CgUaewxJzIa847Bqli9RNcUr7y1d4OwqOilJpypYl/6ygA==[/tex]设某仪器内装有 3 个这种元件,求:(1) [tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]的分布函数[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex];(2) 该元件的寿命不超过 1500 小时的概率;(3) 该仪器装的 3 只元件中至少有 2 只寿命大于 1500 小时的概率.