设图示各梁的[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]已知,试求各支座约束力并作弯矩图。[br][/br][img=337x141]17d8fc14fc64a15.png[/img]
将梁转化成如解17. 15图(c)所示的两部分,查表得,[img=617x289]17d8fc1e660c6c5.png[/img][br][/br]粱系的节点载荷[tex=16.786x3.143]OiJh4U2ShFiI9wtfnkJF1kdT/PWi+jSBqV9rt1EcKdQ1gOGs1nNFIgFEhXJQ5WNTp6IGTNHGVo6tQxbP94pi3SuFKQF9CjSPEv3Wi+ULyVODtBFYdgd9+Nu5FSaRzYTvFJXYAy7kvXQyLnAfspIcR7MkSrbes07CgAKQ0HsxF1U=[/tex]节点位移[tex=12.714x1.714]m9xrWUm4BptnrmAH1Rb562hOD02n5Q/ZXdRa8h2haAOIp8B4RdzKfe5E8+7xuuuMP46KN2GP91EGHBLWaJJNdORllxi0E+7RF1lRyU0sNb2V5I82OEjMHFFxwaYzey5LFPeRfPTzAPmvLcrLAzeK5w==[/tex][br][/br][tex=17.571x5.5]NVBx3AVTn7OruQTRlX4yJ8Q8ON+n0uBJS5ugyACxhluaN3fOLJ6W4ot0DfipL0oNwGfUVfm9DWF1UhAXWcSiT9jKE9VP+dpSIM2codGZPuH4kxoSq85m6QD66EAqk4RXOQJDmEhp2URZu253kBqUav1Em5tKomq5BtCZ8gqdQLz+MtACEtHc7r+MUE3VbjviND7WkCCUeG5e82vQsW3Jv7i+dUzj7oLPrTug2gLwtnqRn+hZ+8MP1VO4qB89hFe5[/tex][br][/br]整体刚度方程[tex=29.429x10.786]jcCMHflCR8OS9TosV6N5vDjj0noII0cFXARTLBZRoaRwiKI/kWrFty0GTrwV2kfK2kRNxK3Z6Bau1eA+oQ8kX0xNS1sVYpW+weHX4rlbGjuC9LxxGR1cfm7r6DMB5MFiLkwxOdKh6SNsBt0ZTg41u56NTlgRhfyPDD9fn8HH5ozcOhgeI98boAXDR2+BGYtgG3S67zpMROpdUIaH7TQaZUH6R5d5fjtpytSpqgLGMTTjGO2IwL2Z3QpSng6AU5glZd2LcC+yTwippIgs4CyQd6KKEdhWarAL5tbVkoxA46nb0xEy0Z3I3pqG1CTR29tIgzV2KdZFWcdoI7R1rWhUBI9UvcE/F+3JkkfKkbqiW63jCGtIbG6rBP4wuya2UzOgeeDg/OUIR1hxB6a10/KYrf/3qe3Sn0qXcjPUhI5dEt95bR1QuxoED4W9/tu44wwQzEC4YAtBCYkDriucQwV5tYpPhCttCXcM51fEqmVabbkWvQUJmVPzE3DZQDautrYZerd0K6ifD10AIP2l5KugJw2vXSo4mkQSa2hFGK1LwrMJeyKqH2Gm1PloGDMkFRCIQLf8Fp+IPZo5vi1bQ8WYgUeWyXfN9qFZ0fx7lUYYdr6JdMePTzc4q3NzAFmzKpFmS7qcJtH45cr6vlcss1cOTyZW6Yq8yHMr107kb/m4h3k=[/tex][br][/br]解得[br][/br][tex=12.0x2.5]qKJ+ye4od7b5szrtr2FlhSgd8ir/Kopq4DmG0lh6wM7hsmmfR4pYY1RgIGMbzl+DMLMCJN9nT/NpW/x0YL+56URJkLBBAmoRgb0MmOk01P9vI9t6Ajq6Xpd1HwcszNlc[/tex][br][/br][tex=11.429x2.429]V5f266uamtXEs1sqUX1Dx3zf9YbsONthdQs+iDgqCS9bMWdN/3ocZDrxWJPgsrvTSINq6NIPEmO93G6sYuJRnWqfWj7GijsS7qxpkSxQXag=[/tex][br][/br]则[tex=9.143x2.357]j9rGq23l1KPWTnBhcKySKFK7LuewN9AQI9ctQORxs/BIRJzjj4DkgBjAlFGnIFwwlJpBaqmKQ6eWxkhtd+UmJA==[/tex][br][/br][tex=10.857x4.857]zbbtCBWNjKFj1cs+wlquxOikyy9IpBTrHxybw/Y/OK2MNXwTL768eKV4TgXqA1x4agR1BkEByAZRtCXyRrEpn/fPAUN2fZxiNqv2SclccLqBbiXARyuuIZ5bq5j2QJNgpMIKLVpxHcWIwtm8PQ9Wxmr0O4CoLiCCgvBDqtPEeKY=[/tex][br][/br]弯矩图如解17. 15图(e)所示[img=258x190]17d8fc3d1850996.png[/img]
举一反三
- 设图示各梁的[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]已知,试求各支座约束力并作弯矩图。[br][/br][img=298x161]17d8fc479028bcb.png[/img]
- 设图示各梁的[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]已知,试求各支座约束力并作弯矩图。[img=291x158]17d8fbbec7711fe.png[/img]
- 设图示各梁的[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]已知,试求各支座约束力并作弯矩图。[img=351x148]17d8fc79d6ed6b8.png[/img]
- 作图示各梁的剪力图和弯矩图。设[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]为常量。[br][/br][img=365x144]17d8aba6098b972.png[/img]
- 作图示各梁的剪力图和弯矩图。设[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]为常量。[img=429x154]17d8ab1e081324f.png[/img]
内容
- 0
试求题图所示梁的支座反力,并作弯矩图。各梁的 [tex=1.214x1.0]s9Je1M5xVQ90RVSHJTCpMA==[/tex]均为常数。[img=328x151]179cbef91c9592b.png[/img]
- 1
试求题图所示梁的支座反力,并作弯矩图。各梁的 [tex=1.214x1.0]s9Je1M5xVQ90RVSHJTCpMA==[/tex]均为常数。[img=298x142]179cbdbb3b76b9c.png[/img]
- 2
利用对称性计算习题 [tex=1.286x1.0]7noDMK2ViqAS+QZ4ygl2AA==[/tex] 图所示结构,并作弯矩图。各杆 [tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex] 相同,常数[img=818x446]17a3e261e107349.png[/img]
- 3
作图[tex=1.0x1.0]GqOMsRKoSA9JSFw5lv/vpw==[/tex]所示结构的弯矩图。已知各杆[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]为常数。[img=260x230]179cc7e08a6f21f.png[/img]
- 4
试作如题[tex=3.143x1.357]mt/w2zN4YWlTNGrZtjvfVQ==[/tex]图所示刚架的弯矩图, 设各杆[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]相局。[img=313x449]179dc7782e94fce.png[/img]