作图示各梁的剪力图和弯矩图。设[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]为常量。[br][/br][img=365x144]17d8aba6098b972.png[/img]
[img=612x306]17d8abacc757719.png[/img][br][/br]支座编号如题14.21图(c)所示,[tex=5.214x1.214]hi/haEKiaXO+Hb38TJpv328i4Vs4p7iUK3jeBsBpYVw=[/tex][br][/br]将铰接点[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]切开,代之以剪力和弯矩,由[tex=1.5x1.0]26VhIWbsXHf0P6SbeZQ7Xw==[/tex]段平衡可得[tex=3.286x2.357]ZI79FkB+87H9kvwCCMKmAiQTsfaqsla6T919pMl8gnA=[/tex][br][/br]则[tex=13.357x3.643]fVuBitEqGbWk/MFRmOLoWkdieV8Z3/ZqaaYBaYeS9kpE4PBD+oK8cAtxgoS6K2a/VlsSf6UZJ/mWvimUhmBEW6tNAtCYExK+QWF4pcXqPhA=[/tex][br][/br]基本静定系的每个跨度皆为简支梁,这些简支梁在外载荷作用下的弯矩图如题14. 21图(c2)所示,由此可得[tex=13.5x4.786]Q5c/FP09QSIxKbIAnXKuouJk4xRccTyaXTf8luwhNaXnOjWHBbOziPek7HUYFqrbya3+ELosq8DTyeBKgft4SlM0AGmG7KLe5krxLzjcGJ+7UmLNsRF4Q4LfBNlR0d80KkxndEGfG3Bd1R/JjAJexe32onY38vM1bIwEG95Swf+sJctCvHCC6vPV4U6qwMlf[/tex][br][/br]三弯矩方程:[tex=24.571x2.643]ovDSLiid4l9qsufzYEOQMkuQtd/7vxDOmRHZZbvAT1vh00WFwWUM5VkIS9SXBR0fl8OB1uCSyzXIlsD2ofORG2Wfm1n1izvgAMzz86T3IAKjHwkYRAUCLN/iLgPQBHrWc/xtL2Me6sBVxONKa+QwvByFUxONERGIMip/yi8e0SyngsE1Oizh5N0uvpkpjHmM[/tex][br][/br]当[tex=2.5x1.0]4/1kK4m052TgsZ3rTR3dow==[/tex]时[tex=18.429x2.571]5ptCocvn5hHF4d1r2i8UV4RMITu59uapFK0I5XnTFqISkpxoAETg26mknCfTedLNsQOov78VLue9gvID0bDGyISOKdFfLw614GVhytgmZM9uP1X86+x6YKFAAjxujXevl+cJTXrvL+sCiDF73z3nadWpXXz2RtjRh960QuKhaoQ=[/tex][br][/br]将数据代人得[tex=20.643x2.786]tS83O7mYDooSC6Qae58fB46W4QLXBKly5OarwxAQAnqXAe1yX8zL+AX3sR8alIqLFOhPNoEdF2UjB+rJ8FgqVssZWi8kOWdYkM93hb0hVsC4MesoUv4cOtDJ+oavbKZn[/tex][br][/br]解得:[tex=5.357x2.357]nuI5nrmT9tE0zmgngJLhU2+gH+BOJ1XeZmwZtfnSJ1A=[/tex][br][/br]由平衡条件[tex=8.429x2.0]TwOBQ6d668aKfRUyy6YqyxymApRz/WJuOwqXAxaT1oo=[/tex]得[br][/br][tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]点:[tex=3.929x2.143]285wYDJ1BFxiQinDZqkZuSpXJqGB4yeIc2cRVcZQzhU=[/tex][tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]点:[tex=6.571x2.357]wddklV8u3sKIQUlqxFxQyRqqcv70a3Xi+Sw3lV+vqOSjtU06CqqdNjy4X66tKVML[/tex][tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]点:[tex=15.214x4.786]UAYgYeUt+FAdxhleDVH5liyoUGXlOWOu88xPDSCYrcdXIWd6DnD1wSEN4PzQWBeAFXOAYk9Z1/o02dhnAmiUzxADI6EP2bMZU3q6fmSmMfYHUH1gb8P7pIV41miKIbwJayrJJ8xLppSnn0363h+FqGCmcYQq3xyWBjKa8GqcyGY=[/tex][tex=0.857x1.0]m2DKAQtGuc1DyN3zyNlILg==[/tex]点:[tex=7.143x2.357]sB9QR2l0w6vFTan5Llpi2wWZicZ3aWc0o/QSI9+rMC48KHp7AySpmSZ6uXvo692f[/tex]作剪力和弯矩图如题14. 21图(c3)和(c-4)所示。
举一反三
- 作图示各梁的剪力图和弯矩图。设[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]为常量。[img=429x154]17d8ab1e081324f.png[/img]
- 设图示各梁的[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]已知,试求各支座约束力并作弯矩图。[br][/br][img=337x141]17d8fc14fc64a15.png[/img]
- 设图示各梁的[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]已知,试求各支座约束力并作弯矩图。[br][/br][img=298x161]17d8fc479028bcb.png[/img]
- 设图示各梁的[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]已知,试求各支座约束力并作弯矩图。[img=291x158]17d8fbbec7711fe.png[/img]
- 设图示各梁的[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]已知,试求各支座约束力并作弯矩图。[img=351x148]17d8fc79d6ed6b8.png[/img]
内容
- 0
作图[tex=1.0x1.0]GqOMsRKoSA9JSFw5lv/vpw==[/tex]所示结构的弯矩图。已知各杆[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]为常数。[img=260x230]179cc7e08a6f21f.png[/img]
- 1
试作如题[tex=3.143x1.357]mt/w2zN4YWlTNGrZtjvfVQ==[/tex]图所示刚架的弯矩图, 设各杆[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]相局。[img=313x449]179dc7782e94fce.png[/img]
- 2
试用力矩分配法计算连续梁(图7-12a),并绘制弯矩图。已知各杆弯曲刚度[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]为常数。[img=647x435]179f09d4fdd2464.png[/img]
- 3
利用奇异函数求图示简支梁的弯曲变形。设[tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]为常数。[img=429x202]17d6c495064f5a0.png[/img]
- 4
用积分法建立图[tex=2.286x1.143]fZ6GnUm6ZRxcs7uVogTbpw==[/tex]所示简支梁的转角方程和挠曲线方程。设梁的抗弯刚度 [tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]为常量。[img=355x238]17cfff5feb5d9e5.png[/img]