GoogLeNet中1X1卷积核的作用是控制输入的通道个数,减少卷积操作参数,还能起到shortcut的作用
A: 正确
B: 错误
A: 正确
B: 错误
举一反三
- GoogLeNet中1X1卷积核的作用是控制输入的通道个数,减少卷积操作参数,还能起到shortcut的作用 A: 正确 B: 错误
- 有关卷积神经网络的说法错误的是( ) A: 卷积神经网络的卷积操作一般不能跨通道 B: 对输入图像进行卷积操作,其卷积核的通道数可以与输入图像的通道数不一样 C: 基础的卷积神经网络一般包括卷积层、池化层和全连接层 D: 卷积的主要作用是提取特征,池化的主要作用是进行特征的筛选
- 卷积神经网络中,输入图片为RGB3个通道,每个通道大小为32x32,即输入大小为32x32x3,单个卷积核大小为5x5x3,卷积核个数为6,步长为1,无补边,则输出的大小为( )。 A: 14x14 B: 14x14x3 C: 27x27x6 D: 27x27x3
- 有一卷积层,输入大小为7*7,卷积核大小为3*3,有3个输入通道,有2个输出通道,则该卷积层的权值(weight)参数个数有________个,偏置(bias)参数有________个。
- 以下有关卷积神经网络的说法,哪些是错误的? A: 卷积核中的取值在训练过程中不会发生变化。 B: 共享权重大大减少了参数的个数,降低了网络的复杂度。 C: 增加卷积核的大小和通道的个数,可以提升特征获取的能力,但同时速度可能会降低。 D: 卷积核变大会减少网络需要优化的参数。