在卷积网络中,卷积层的参数是卷积核和偏置,池化层没有参数,因此在误差反向传播时只要优化卷积层的参数。
举一反三
- 卷积神经网络中有哪些参数是需要通过学习得到的 A: 卷积核权重参数 B: 池化层参数 C: 激活函数 D: 偏置
- 卷积神经网络通常包含哪些层( ) A: 全连接层 B: 池化层 C: 卷积层 D: 参数优化层
- 卷积神经网络的参数主要集中在? ( ) A: 卷积层 B: 激活层 C: 全连接层 D: 池化层
- 有关卷积神经网络的说法哪个是正确的? A: 卷积核越大越好 B: 不同卷积层或同一卷积层只能用一种大小的卷积核 C: 在卷积层之前使用池化操作,可以减少卷积层参数量 D: 类似AlexNet网络使用的分组卷积可以增加卷积层的参数量
- 卷积神经网络的结构为“卷积层-池化层-卷积层-池化层-全连接层-全连接层”。