用初等变换求矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的逆矩阵[tex=1.714x1.214]ehC1Fy05fIHTeRCJHyodYA==[/tex],其中[tex=7.786x3.5]QN0fTQbn6M33pU3gx/S2slUv+QIAEV/W1i1RUgTPCJS5pjMUPJlmJuZaQR+goLgrPPAzFEdBL6LNcWP6UVDBDonPFtF71ARAIJfHtCzCnnHae7PJ53aRAO7HMNzanpFL[/tex].
举一反三
- 用初等变换求矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的逆矩阵[tex=1.714x1.214]ehC1Fy05fIHTeRCJHyodYA==[/tex],其中[tex=9.357x3.643]QN0fTQbn6M33pU3gx/S2skBf9r/jVKLZ7SYtu+2BgAGoXeCNmbjLSv6XuoZHCLh1+PA4Fjxgf9uDW9pKd4Ni/gioTZCIDvRotEI3NYLBxRhOvfIfTEciMevgO3Ne8jbS[/tex]
- 用初等变换求矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的逆矩阵[tex=1.714x1.214]7C7buHrEjtTiQLgvjQX6/w==[/tex],其中[tex=8.571x3.643]QN0fTQbn6M33pU3gx/S2shFzvXJob3IOOSqx/0F5epuFUiX1PtL+EVW5R+1Wy3HAqDRxsEBJGQ/9xC8zdcogrpaXw+L4wkEJqK8muBn7Q4NX5VupXCIXlEcXGfrTuReu[/tex].
- 已知[tex=7.786x3.5]QN0fTQbn6M33pU3gx/S2sjK5reBfyeNY2er5BSmUnP2bJk2RKrHcOTktn0jwS2dXnOq4wvcctaNp3MMzqUus1lKKm6qGoI6CMx/tFS3/bJZ8Yr04zVcm3wuDtHoJ6IW9[/tex],求矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的秩=( )。 未知类型:{'options': ['1', '2', '3', '4'], 'type': 102}
- 如果 [tex=4.143x1.214]vWxSazeVfknbaCzVb2iP3Q==[/tex]矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]就称为与[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]可交换.设[tex=7.786x3.5]QN0fTQbn6M33pU3gx/S2slUv+QIAEV/W1i1RUgTPCJRt0S2ieqP4jsfDPRJ/uvAZ8HCGO+LX/8fobElsIswOqn2V5Dl+8Mn6GvSODV3w+nP59eiqnET4zAqxWkumMBxm[/tex]求与A可交换的矩阵
- 求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$