用初等变换求矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的逆矩阵[tex=1.714x1.214]ehC1Fy05fIHTeRCJHyodYA==[/tex],其中[tex=9.357x3.643]QN0fTQbn6M33pU3gx/S2skBf9r/jVKLZ7SYtu+2BgAGoXeCNmbjLSv6XuoZHCLh1+PA4Fjxgf9uDW9pKd4Ni/gioTZCIDvRotEI3NYLBxRhOvfIfTEciMevgO3Ne8jbS[/tex]
举一反三
- 用初等变换求矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的逆矩阵[tex=1.714x1.214]ehC1Fy05fIHTeRCJHyodYA==[/tex],其中[tex=7.786x3.5]QN0fTQbn6M33pU3gx/S2slUv+QIAEV/W1i1RUgTPCJS5pjMUPJlmJuZaQR+goLgrPPAzFEdBL6LNcWP6UVDBDonPFtF71ARAIJfHtCzCnnHae7PJ53aRAO7HMNzanpFL[/tex].
- 用初等变换求矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的逆矩阵[tex=1.714x1.214]7C7buHrEjtTiQLgvjQX6/w==[/tex],其中[tex=8.571x3.643]QN0fTQbn6M33pU3gx/S2shFzvXJob3IOOSqx/0F5epuFUiX1PtL+EVW5R+1Wy3HAqDRxsEBJGQ/9xC8zdcogrpaXw+L4wkEJqK8muBn7Q4NX5VupXCIXlEcXGfrTuReu[/tex].
- 求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$
- 已知[tex=7.786x3.5]QN0fTQbn6M33pU3gx/S2sjK5reBfyeNY2er5BSmUnP2bJk2RKrHcOTktn0jwS2dXnOq4wvcctaNp3MMzqUus1lKKm6qGoI6CMx/tFS3/bJZ8Yr04zVcm3wuDtHoJ6IW9[/tex],求矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的秩=( )。 未知类型:{'options': ['1', '2', '3', '4'], 'type': 102}
- 设[tex=9.357x3.643]QN0fTQbn6M33pU3gx/S2shFzvXJob3IOOSqx/0F5epuU662GpcBEF5cu61RENz4uyutLiD2e70XVgXM6ptliBx2TkKz4IlHMjYGYQXDVqkmm4eBMmGssz7bFOofj3lVX[/tex],[tex=7.714x2.786]DgXZT9CtCPAglTYwc4pEdcNlcnUIF+BrRKWBao1p88XOv8dvbR6O1cAN14sUaO/Wcb15HFrZpDe07VNdgft9gc8CQeFx1/vusTp1t8fBWcI=[/tex]满足矩阵方程[tex=3.143x1.0]XnDGp2Hw+MpCu8i/Zy+ELg==[/tex](1) 求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的逆矩阵[tex=1.714x1.214]U68gBJ5WJ348ks0iIqWsqQ==[/tex] ;(2)求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex].