设[tex=7.0x2.786]3BT1BgBZQ5uJXxD5dg+w2za2V9lFUFkU2AOGAAfx7myViUnJZ1zSk2EYcKz1DZiDrx6faQSNBjWwEWkWWeF64A==[/tex],求:[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值与特征向量。
举一反三
- 求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$
- 设 3 阶实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为 2,5,5,[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的对应于特征值 2 的特征向量是[tex=4.857x2.071]3wI+QNTkLmRrec03TCM9bFWZpADYRyMPrZBNYCkoBfU=[/tex],则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的属于 5 的两个线性无关的特征向量可取为[input=type:blank,size:4][/input]。
- 设三阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征值为 1,0,-1, [tex=6.714x1.5]7bGiNOe0YjBuJQQCRBnghchqaQJ/9W+okFTM8IKa+Pw=[/tex], 则 [tex=2.071x1.357]zkyFImCDGinRULJKGBGYrA==[/tex] 的特征值为 A: -2,-1,2 B: -2,-1,-2 C: 2,1,-2 D: 2,0,-2
- 设三阶实对称矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的各行元素之和均为 3, 向量 [tex=12.286x1.429]JNj7POW+1qKsJ6FpVnVQ80+mAxITNuEZTnpPv1rhk2OmxFjFFZ8rSNAN/r64/x+eLzBtgKlmK9VZAE6BAqyN4Q==[/tex] 是线性方程组 [tex=2.643x1.0]Luk4dywqmDJgAqza1pE8oQ==[/tex] 的两个解.(1) 求 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征值和特征向量;(2) 求正交矩阵 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex] 和对角矩阵 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex], 使 [tex=4.214x1.357]Ang224t0ZkPRN0Lf6Z6iAE2cpa5ebyWchty9j+k3c2w=[/tex].
- 设 [tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的一个特征值.(1)求 [tex=6.786x1.429]GEUVl9vJyMoBP0kYsKqMRtZf6gqbSM5309Sk1nGUexQ=[/tex] 的一个特征值;(2)若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可逆,求 [tex=8.786x1.429]7Lqpjv7nrdJ0r67Eup8jNGZNIM2UNZuj8DSfvgqlnAE/mhbyNwTbfPyQt74/IE1P[/tex] 的一个特征值.