设三阶对称矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值为6,3,3,与特征值6对应的特征向量为[tex=5.286x1.5]7SO+1xanaUBExj3X4I1Ptj6zjgGXxaG/QZ3ARAaDg0U=[/tex],求[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] .
举一反三
- 设 3 阶实对称矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值为 6、3 、 3, 与特征值 6 对应的特征向量为 [tex=6.929x1.286]P7m89WiGmN+qYSkz4792P+GrblnpfD/w6lXOEvICZQ8=[/tex],求与特征值 3 对应的特征向量。
- 设 3 阶实对称阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为 6,3,3, 而与 6 对应的特征向量为[tex=4.5x2.071]gNvMj7dMtP4xIuVKjb90PKDdjWJPCXpKTSBlYcK7VEM=[/tex]求[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex] .
- 设3阶矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值为-2, -1, 3,矩阵[tex=6.786x1.357]5sQBSCH1+oEoQda8DcapHw==[/tex],求矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的行列式[tex=1.357x1.357]JRr5OoiiAPF9KB2ukKJtuw==[/tex]
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为3阶矩阵,满足[tex=14.214x1.357]jZXpielExdVq250XLqu7h6LuoRAFq0f0w0Z1fVS42B0=[/tex],求[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值
- 求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$