设3阶矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值为-2, -1, 3,矩阵[tex=6.786x1.357]5sQBSCH1+oEoQda8DcapHw==[/tex],求矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的行列式[tex=1.357x1.357]JRr5OoiiAPF9KB2ukKJtuw==[/tex]
举一反三
- 已知[tex=1.786x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]为3阶矩阵,且[tex=6.5x1.357]Xw38Dcvrbs7IEKOZRvkd5g==[/tex],其中[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]是3阶单位矩阵.(1)证明:矩阵[tex=2.786x1.143]RcZ2ZRIlzxNTbD8lUHAX+Q==[/tex]可逆;(2)若[tex=7.786x3.5]DgXZT9CtCPAglTYwc4pEdVwGPrEvfplbNSz07f1CHm3lKZFzRkIi88nqRWCa7cdxtDn1Uq6Au4bDH+3NSK9+pGWuIrunnKgMXUiXxap7tYqS5e4P0ZLrWW76zZyDl/um[/tex],求矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]
- 求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为3阶矩阵,满足[tex=14.214x1.357]jZXpielExdVq250XLqu7h6LuoRAFq0f0w0Z1fVS42B0=[/tex],求[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶可逆矩阵,且[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]相似于[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex],试证:[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]为可逆矩阵
- 设三 阶实对称矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特 征值为[tex=2.857x1.214]HHxRJ23zQgdYG79XNeKJ2g==[/tex], 且[tex=5.143x1.357]pQGTsi1jwQF1Le0nyhymONqZ4RKaGrJcTqeUPSypnHs=[/tex], 试求矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的特征值. [br][/br]