$M_{\mathrm P}$图、$ \bar M $图如下图所示,$EI $=常数。则图乘$ \frac{1}{{EI}}(\frac{2}{3} \times \frac{{q{l^2}}}{8} \times l) \times \frac{l}{4} $是正确的。
举一反三
- 下列各组量子数中,哪一组可以描述原子中电子的状态? A: `n=2,l=2,m_{l}=0,m_{s}=\frac{1}{2}` B: `n=3,l=1,m_{l}=-1,m_{s}=-\frac{1}{2}` C: `n=1,l=2,m_{l}=1,m_{s}=\frac{1}{2}` D: `n=1,l=0,m_{l}=1,m_{s}=-\frac{1}{2}`
- \(已知曲线弧L:y=\sqrt{1-x^2}(0\le x\le 1).则\int_{L}xyds=(\,)\) A: \[1\] B: \[\frac{1}{2}\] C: \[\frac{1}{3}\] D: \[\frac{1}{4}\]
- For the integral $\int_0^{+\infty}\frac{dx}{(x^2+p^2)(x^2+q^2)}$, which of the following statements are CORRECT? A: $\frac{1}{q^2-p^2}[\frac{1}{p}-\frac{1}{q}]\frac{\pi}{2},p>0 \ q>0;$ B: $\frac{1}{q^2-p^2}[\frac{1}{q}+\frac{1}{p}]\frac{\pi}{2}, -p>0 \ -q>0;$ C: $\frac{1}{q^2-p^2}[\frac{1}{p}-\frac{1}{q}]\frac{\pi}{2}, p>0 \ -q>0;$ D: $\frac{1}{p^2-q^2}[\frac{1}{q}+\frac{1}{p}]\frac{\pi}{2}, -p>0 \ q>0.$
- \(已知L为抛物线y^2=x上从点A(1,-1)到点B(1,1)的一段弧,则\int_{L}xyds=(\,)\) A: \[\frac{4}{5}\] B: \[\frac{3}{5}\] C: \[\frac{2}{5}\] D: \[\frac{1}{5}\]
- 如图所示,电荷\(-\)Q 均匀分布在半径为R、长为L的圆弧上,圆弧的两端有一小空隙,空隙长为\(\Delta\)L(\(\Delta\)L< A: \(\frac{-Q\Delta L}{4\pi\varepsilon_0R^2L} \vec i\), \(\frac{-Q}{4\pi\varepsilon_0R}\) B: \(\frac{-Q\Delta L}{8\pi\varepsilon_0R^3} \vec i\), \(\frac{-Q}{4\pi\varepsilon_0R}\) C: \(\frac{Q\Delta L}{4\pi\varepsilon_0R^2L} \vec i\), \(\frac{Q}{4\pi\varepsilon_0R}\) D: \(\frac{-Q\Delta L}{4\pi\varepsilon_0R^2L} \vec i\), \(\frac{-Q\Delta L}{4\pi\varepsilon_0RL}\)