如图所示,电荷\(-\)Q 均匀分布在半径为R、长为L的圆弧上,圆弧的两端有一小空隙,空隙长为\(\Delta\)L(\(\Delta\)L<
A: \(\frac{-Q\Delta L}{4\pi\varepsilon_0R^2L} \vec i\), \(\frac{-Q}{4\pi\varepsilon_0R}\)
B: \(\frac{-Q\Delta L}{8\pi\varepsilon_0R^3} \vec i\), \(\frac{-Q}{4\pi\varepsilon_0R}\)
C: \(\frac{Q\Delta L}{4\pi\varepsilon_0R^2L} \vec i\), \(\frac{Q}{4\pi\varepsilon_0R}\)
D: \(\frac{-Q\Delta L}{4\pi\varepsilon_0R^2L} \vec i\), \(\frac{-Q\Delta L}{4\pi\varepsilon_0RL}\)
A: \(\frac{-Q\Delta L}{4\pi\varepsilon_0R^2L} \vec i\), \(\frac{-Q}{4\pi\varepsilon_0R}\)
B: \(\frac{-Q\Delta L}{8\pi\varepsilon_0R^3} \vec i\), \(\frac{-Q}{4\pi\varepsilon_0R}\)
C: \(\frac{Q\Delta L}{4\pi\varepsilon_0R^2L} \vec i\), \(\frac{Q}{4\pi\varepsilon_0R}\)
D: \(\frac{-Q\Delta L}{4\pi\varepsilon_0R^2L} \vec i\), \(\frac{-Q\Delta L}{4\pi\varepsilon_0RL}\)
举一反三
- For the integral $\int_0^{+\infty}\frac{dx}{(x^2+p^2)(x^2+q^2)}$, which of the following statements are CORRECT? A: $\frac{1}{q^2-p^2}[\frac{1}{p}-\frac{1}{q}]\frac{\pi}{2},p>0 \ q>0;$ B: $\frac{1}{q^2-p^2}[\frac{1}{q}+\frac{1}{p}]\frac{\pi}{2}, -p>0 \ -q>0;$ C: $\frac{1}{q^2-p^2}[\frac{1}{p}-\frac{1}{q}]\frac{\pi}{2}, p>0 \ -q>0;$ D: $\frac{1}{p^2-q^2}[\frac{1}{q}+\frac{1}{p}]\frac{\pi}{2}, -p>0 \ q>0.$
- 半径为$R$, 密度为$1$的均匀平面薄板关于其切线的转动惯量为 A: $\frac{3\pi R^4}{4}$ B: $\frac{5\pi R^4}{4}$ C: $\frac{5\pi R^3}{4}$ D: $\frac{4\pi R^3}{3}$
- 函数$f(x)=\sin x + \cos x,x \in [0,2 \pi]$的上凸区间为 A: $[0,\frac{\pi}{4}] \cup [\frac{5}{4} \pi,2 \pi] $ B: $[\frac{\pi}{4},\frac{5}{4} \pi]$ C: $[0,\frac{3}{4}\pi] \cup [\frac{7}{4} \pi,2 \pi] $ D: $[\frac{3}{4} \pi,\frac{7}{4} \pi] $
- (单选题)真空中两块互相平行的无限大均匀带电平面。其电荷面密度分别为\(+\sigma\)和\(+2\sigma\),两板之间的距离为\(d\)。两板之间的电场强度的大小和电势差分别为 A: \(\Large{\frac{\sigma}{2\varepsilon _0}}\),\(\Large{\frac{\sigma}{2\varepsilon _0}}\)\(d\)。 B: \(0\),\(0\)。 C: \(\Large{\frac{3\sigma}{2\varepsilon _0}}\),\(\Large{\frac{3\sigma}{2\varepsilon _0}}\)\(d\)。 D: \(\Large{\frac{\sigma}{\varepsilon _0}}\),\(\Large{\frac{\sigma}{\varepsilon _0}}\)\(d\)。
- (单选题)若氢原子中电子轨道半径为\(r\),则质子与电子的结合能(把电子从氢原子中移到无穷远处所需的能量)是 A: \(\Large{\frac{e^2}{4\pi \varepsilon_0 r}}\)。 B: \(-\Large{\frac{e^2}{4\pi \varepsilon_0 r}}\)。 C: \(\Large{\frac{e^2}{8\pi \varepsilon_0 r}}\)。 D: \(-\Large{\frac{e^2}{8\pi \varepsilon_0 r}}\)。