已知x、y是整数,且满足方程x^2-y^2=2020,x+y可能等于()
A: 1
B: 2020
C: 2
D: 5
E: 404
A: 1
B: 2020
C: 2
D: 5
E: 404
举一反三
- 4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$
- 【单选题】若 x - y = 2 , x 2 + y 2 = 4 ,则 x 2020 + y 2020 =() A. 4 B. 2020 2 C. 2 2020 D. 4 2020
- 实验命令“ syms x y; z=2*exp(x*y)+log(x+y); zx=diff(z,'x')”的结果是【】. A: 2*exp(x*y)+log(x+y); B: 2* y*exp(x*y)+1/(x+y); C: 2*x*exp(x*y)+1/(x+y); D: 无结果.
- 【单选题】与曲线 y = x 2 相切,且与直线 x + 2 y + 1 = 0 垂直的直线的方程为 () A. y = 2 x - 1 B. y = 2 x + 2 C. y = 2 x - 2 D. y = 2 x + 1
- $(0,0)$是以下函数$f(x,y)$的定义域的内点是 A: $f(x,y)=\sqrt{x} \ln(x+y)$ B: $f(x,y)=\frac{x+y}{x^2+y^2 }$ C: $f(x,y)=\arcsin \frac{x}{y}$ D: $f(x,y)=\ln (1-x^2-y^2)$