解 由拉格朗日函数, 可得正则动量为[tex=8.071x2.643]BxHs9fk4+FbT4TZD3TDb32tFvqP9OMVt2uLDE7927Wo8CEomeuycSrpIwYE3E5B2PXCMH9wwiOjDyzDBYjrvDgK2i7ciIAsvX+Cv0EFhjFJVsc/GFuswHmYQXW0Yald3[/tex]则系统的哈密顿函数为[tex=17.429x2.5]E9n6kGbzd8RDNZbU13bb7elfdk3z99MpxIfWan1tfPeqSLePJm1jRMxW3GSgUUIhgaaIIAZIlvVa6QM7M4P8OV8Oex2FDA5hbeT7EVTO1lTAcWhylhXgVkGIhw/9cN7a8ANdUaauomcm2i9BUyBZ6mqN8u6ftIG4PCot450xzZM=[/tex](1)这里哈密顿函数显含时间. 由生成函数可得正则变换为[tex=18.929x2.643]BxHs9fk4+FbT4TZD3TDb38r7S3RvI+FUDT2hO7BMHwt0jR7Eyx3LHZS5Ne30IQGBMVo4nNBlSnesKZXMMlJlF9t+xsjCC2gWCOITWWEPRbPSqb+NW3i1J97x72kvjZszJhznmtQRJAzOTI/IEI1l17tqbfDdSZ0oJ1TbJ7ICndwRm23vWraOW5iacsJrEHlS5cXUzhYTRxE/kWCXDjv7sQ==[/tex](2)变换后的系统的哈密顿函数为[tex=25.357x2.5]K44ToIs8d4+NX1VhJFHB/kKub1yYOh3xK7tziEgcczxLDIKxCaEGt4vxvJ7dK6j97SRK6e0G2LaLkll7sLQYiY0Is+GGAcZQaZFjWQIU1EsT03pwTAe6pDZvA3aojsBIFq2brSWUUyZrip8+Ee+XcSBRfKr9lB3k4waszKsvkON1HkIm7qTFqaTf7YuSKa8B[/tex](3)可见, 变换后哈密顿函数不再显含时间. 与新哈密顿函数相关联的哈密顿 - 雅可比方程为[tex=20.714x2.929]fFqy68FUwqdnigCf4X9+0NkLbZ3Wra91E0iey/2Xb9Dv9QBTlFOAeX0KAKDIuuH8Dek3EtFntNCdLzD7mmXgaaJM84P6zYtxabnydFln/jHf6rpEzu53Rxk1nqT6Yvr2P1H7RdTcJ7WjeINKvrIhBrJ5bx3/w/0UAFGn0BQFzycKIzSxrVn6LK1QJNgJRGvw4e7Hk0eitP6Kdh7c9hl70V+kd0J2VG/jtLrv0GYxcIFmlBuvlPpTcmBKIUGG5RLM[/tex](4)令[tex=10.786x1.357]kBOufpqC6RSkmp86XBO1nzt+Jlkomt5xPWSGYAksblJCclmeUz7xmxIUbCCnz4aN[/tex], 其中[tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex]为常数, 它等于[tex=0.857x1.0]2/nETbh3LafNJQWt4J1rDA==[/tex] . [tex=1.0x1.0]XyzqB7VduQKuYOSYbtY4TQ==[/tex] 满足的微分方程为[tex=19.071x2.929]fFqy68FUwqdnigCf4X9+0NkLbZ3Wra91E0iey/2Xb9DL5Q+sEuJrsdjP4Gxh4jx8c/FMXn1b2rqyqxHTLAG65fD3qggwosMaPxFXNDfgQ9i6jTCXK6sJHFUN4qvw6yJGyJ0VIt8ZhQ8S/nOHfOFAbgg+Ns+0NwkWjWWfTFtFb06oO0GU1xopfq8n2lCkbFFM4aT15eG78jultKSoMcXD6SEXZtrrt6zNafcYcUBvXi4=[/tex](5)令[tex=5.5x1.357]0rpojHMkuDcTG9eU+nfdmHMxR8mHbthexyxYHj+cPMk=[/tex], [tex=4.0x2.571]4qTrZ1+Ba/VG/rAxGKdU3NgF7h3+M/PHuzk5wNVPP88=[/tex], [tex=3.143x2.5]7pWwC8DZp1x6sG4G5y74PUgk1payRzOBgCIYWPsS++A=[/tex], 则方程 (5) 可写为[tex=14.214x2.929]PYPlEgwNKA9y6IkAp7Vv1HrncDnrAecJ1Sh3B8CHFHsE2w5tymxy1gYjVDpyGymENuCHDEdstNGJnyG6MUXSutBNUfxr2leaCP1n2SuVYlCEdvW+sLhT129ddRD67k7KyqLJJ2LuRSibB0a4mIESYQ==[/tex](6)设初始条件为[tex=3.857x1.357]vEQRRzUeN69MnDQy903r2g==[/tex], [tex=3.571x1.357]uys7jLD1kJ7HMwf3VrPK4Q==[/tex], 此时有[tex=2.5x1.071]0P4jyFFEGSzjbMeU8H7/+w==[/tex], [tex=2.286x1.071]3fpFg2hEhzREgIq3MQR5mQ==[/tex]. 方程 (6) 的解为[tex=14.5x3.429]VGXzV15psxV0cBMwKVrVbhhX0QxZqDt1aiZI9949bZrRcNR1m6VQafWJU/fryAuKMg3vIohEgiVZsZdp/pB4CF/LwxBryPBy6CmlvMDIvQ7DyFPDYfqCtTXs7bFj9FdSQo/EV9E1EcqmlXhEV1UgVg==[/tex](7)其中, 第二项的符号的选取并不重要, 因而有[tex=16.429x3.429]pfJQeaTeGxQgw1vwtw9WPNaLSLMb44Gzzgo13e8HdjcosU95Bm6L2Fq1sShIKrFp2q+yzQHOJO7JVkI2dVn3Auh7fcXZDl5aS6kxW/cYyBzcjYV6ViKqC/p2/CmD/lAj[/tex]可以分三种情况讨论:① [tex=2.429x1.071]UWhxabMM1ACcn4uBiYMWIA==[/tex]或[tex=4.429x2.571]f0cHtU20mEyGIrmqIQ1aQuQWM2Xnh/z54pmTiPLp6g3zs/yzDgTWB1wrmjOvu5IH[/tex]. 令[tex=5.429x2.786]/dt3Is6+y7rnWo+Aloq3mRn8HAfR7lOWwVEEw3gtypM=[/tex], 则有[tex=14.286x2.714]HXF0jIHlxRTjlrsW0Pm+UzcsSje62uAK7eruF2E514ol8GB4gZdlnde+Jj+xr/YPCgYFiUF0J2FnsPS2dpbMsN12xppmN+RI0lCqUP0FdrQ=[/tex]由[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]可得[tex=23.929x2.714]zU8HSLK6rxIfewU7xKF+/gcjLgse3S0oHrrgMJEC6xmcUx7+GLKeLoK9MEjJAlM/0obrYbobNYLTbwYProX5x557oJi1wdPnbokullFNiVfJYYiJQSK6eAcvBlGceLD0X+BLwfOUkI00qlb6XvdUnCPhetQhOIjDWWEtanf3EkxG1ZgPziqYQOEMSE3G5FgzXDQ1M/H7ADVuUX+Dfok0vWn7sxA5s1rC8UxgSHb9nO0=[/tex]故有[tex=17.929x2.643]w0FCT+jBIIUBMK4Tl19GMRnTowZDNOfsjCEH9wqkM4JmhhGum83DEA02O5feazJAf4aoVvUtrG3SaA504ky5dfBugXkpQjBpcsZorS/jQHiyRTOpzlqNqqkqO606jawhs/aOraXe2zy2GmhUJ6Tjvg==[/tex]其中, [tex=12.643x3.357]dFuH9eXfAoxy/PEGB73UIAwS6ZB3Of6d4zWtX6gx5FGzuT3KeIYMk7HBELxEJvjrhIvUqYhknC+eQmWjDLG9tRYeKxDmFmc/r8uvEsjuVAKY4dj3b7EP9XM0pwSXQVg0[/tex]. 于是系统的解为[tex=26.071x2.429]/uDSGWRh8xOLtLaODsEL6wwT0OPwTPNnca6OqMgoHypd0M7q/W256OujVj54REE/APyB6FfRXA+zAvdQRSaiymQv3CH/E8Qm593wCohwcGElliWup0sOPDByVGda1aSzhDXqd/6nRGFNM9nNthbIEGO/ULCOrzM1ai+WWCyDOGR4ja+TC+L9A3ozVuESIZcb1UMe0hssSO3OwqyvMuIqnMz3gN6TYaSuTI5XiMCoqKk=[/tex]其中, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]和[tex=0.5x1.0]g3C024VcW5lWpceJ6ZrB4A==[/tex]由初始条件确定.② [tex=2.429x1.0]hbkUQ2X/71dsuvn1xCcr8g==[/tex]或[tex=4.429x2.571]f0cHtU20mEyGIrmqIQ1aQuoI9PV1dfBmNHg2SiNAr5k9oy2FIVxTSZwTC7asQuPi[/tex]. 在该情况下[tex=20.5x2.786]HXF0jIHlxRTjlrsW0Pm+UzcsSje62uAK7eruF2E514oR4SZeaWc+FG5z5uPlehS7xTusXMdQhHjrvncBsQDlWoPmi6dlKMUZykw4wPZ0hmxil/XJJGJ5fAdQZ+rI1wF5brQU1wBTGRuD3W/KPBewhjoCUSYD6ze8HPCavcUAiz4=[/tex]系统的解为[tex=10.357x1.571]PshiQvBuXwU3cNlN1BKjpO2hKarvnv3snJv5/7jxyNWCteiRaIQfYkebaN35zeeyjYYSVyHY2rx7Ku70K6qndQ==[/tex]其中, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]和[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]由初始条件确定.③[tex=2.429x1.071]/EybGZmiYKuFSTAFzdQgkA==[/tex] 或[tex=4.429x2.571]u/RdNtTL1pkvBroa4JKEUdd2/7z+1a9AWcUvhRU0jA/GixVBcMXkXB87/KHMxe/x[/tex]. 令[tex=5.571x2.786]snVXoYV8S2WCJ/EXtB7GlCKeONYr1aSPGIYJ7ZpKbeM=[/tex], 则有[br][/br][tex=14.5x2.714]k7E4w8WDdH/TNX930n7lGe+labK0Ll/qGUeMQLLfpHtWLneu0+6k2qylQCiPq8YZpoGx+QModXRhfEaVwgw3MqBK7DOxQEn+eHIAfQbQYg4=[/tex]由此, 有[tex=24.643x2.714]zU8HSLK6rxIfewU7xKF+/gcjLgse3S0oHrrgMJEC6xmcUx7+GLKeLoK9MEjJAlM/0obrYbobNYLTbwYProX5x557oJi1wdPnbokullFNiVfJYYiJQSK6eAcvBlGceLD0syoX3tAaMcb/6gpWG3Q8K/Kd67D1E5xXTnvVEktrSnx5HosEUZIITGIcxNyO1Ku8R48RrVfRqeuQtPq+4a2SDioC/oItGLR/rmQwwWdrizHti3asGHqN8uFiZPGZ/aW6[/tex]即[tex=20.143x2.643]w0FCT+jBIIUBMK4Tl19GMc8U5x4YxJ/78N8sOYTA9WrWABNphCIkV218Wh9jkmWTWt+BlZU/HJagfoDsVnhYlbAo5RdfWQ95lVpEQTmC0e7NE8bXZqP9ss1vVV0hMaDLNcxvOkCffmxKcDbusdrnSWLhaQxAYwirmcWbk5LVmfHG4j+dMvJieo4dIY8ePfDC[/tex]其中,[tex=10.286x3.357]0l++3x1Pfxym2h2YqhLSWvv20eS9kM3rtdgXdINtQUPbmVy/CH1pWGDq629NBR2n+y6fpReldIRuxpxNIeePuecHLXDmX4naS0RSGJuJ+WGvYt/w4FZpt5QVGUng25sd[/tex]. 系统的解为[tex=13.929x1.571]mzgf77j9eaJMWbwL1R+WhJLREt6PRzGO2FOHu3FpMOEv531r26IhFUSRce7G4ew9VwzYBUQyj4GXPlBQNwSvrtcNcwrO/tDMZhdQf7nOgktK6Ja1VU5BVraFGDo+d5x5[/tex]其中, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]和[tex=0.857x1.214]IazzD0SBMXTbCAsp8C+m9Q==[/tex]由初始条件确定.