试用单级数[tex=10.5x2.714]H1cKoxnM+wFeNX08xy6oUfbomyIqxjLuULtPa0MV1GQFkiJe1Btvmj8Jrat966VVix2Osc85sjmFLuczPS8MGQ==[/tex]求解图 10-21 所示矩形板的挠度曲面函数。[img=334x287]17959f4047603c4.png[/img]
[tex=22.143x13.357]a0s3MH7cLIdmiBRR0YN0622GGlzS92KRuuztilAdcEfka+J8cgZYg+L9yjB3lshE772UIR+avX9+boiSfL0HYmSDv6J9Vy0c6Q/4wqxlJG/UnSJJfK92s1JUDibORAwKlNayIHHtQGtIkFLE/9CCuFLFfCDt+L1RnhzVyveVy4FXnTdhIk4fjFN0g8qQrbVmFxxx+4kQPmETxCWYy3fBZn1gudLIu2aDz1DZwuDjtR0o3xOmexzbBoDvUsX7R/RoD+6jPmlhlh6bgf0DOvHpl1so32LaiDH/dookIvemzQN8wGKmwNxRb537ATwg0+Ugk0WNtm5dZ/hQ+iutfII/ofA0xfdTBRe4WyUicy3zs9NFsOojO7sF3jX+gGE5cj8PLC1W+f6+BMm/e9ZqvaCAyzCDtK98Ww+ijna5rkhR14DWviP+AJz6W/+JUfKROW3oJjwGhYdvgw5sHKmM3QP22kur1VA2z9y8NgVBSFeuv9fenDabC3rCb8PK0PMGRHflrE3xWEBo00AY64ZpB04/OZP0jPLfqLn942cjmnyNUq8RCbhci/sSkQdthFC4XajYFfA12x+owp+92cNWnc8OZulwzKaORN6fFFKzQljyDayq/fkWMSY7nTpDAe/StdkItE8JsVmpXKiPFrlRfRXTiQfGwsdssqlFfU3ww6pkglYi78csFxUqCPdmGZVH75xgHXXWmu0asOD5RnGt/qyi+IJkY65wAfJ/gzC713Q5oFgo1HkA+zV4DlWyXIRxfSKfLpJ712HCDTh3bU/dvDeoE8tg9LW6EYdg7h8qoN0wfHicJhrkTDEiM27TTC+Vzn27PnEMhOUaFNEdb6vWaJWXgQiqoEUU9v4C5dhcDXCDxngP2DgjbreXXay+s4ndPRgPQ2TUBD7m2lkIG13MEeUtqcrEcREtwQRdG7KT9MTrQUnXSmF5EslOVPdZn35255w6O4oLe1YsqujfJDz+TuW00+8LOxcwALgtT49wyWfWDoY=[/tex][tex=13.357x5.643]Ck4j1YFlvVH5wCAykOEMi/oxwHXyeN04E/oU9OE3Qe+14vq0ZT9S8CsI/pELY80xqnX6orkAabHyrCV63Mu8vFJdU9uoFBTTCtNU++gZWQk7ylx9V2sVKkSDJ8wTqalJcxbIT2SH+k0Gp3xDXguUE/zULSfePi9fjaaDWKZ8eSsGekYfQjpTZ+jQJM6JXz59oOy6aXt3F9+m45s3JH5UCxmK3FnXtQVQy+ai8VvutlG6SZ62u1JYorcmM2821rvTLxEZs5hAl1Hzqc5nEds1UvlUdFux83al70Fr7papmEGp0Kn3IDZne/sDDsndYd0a524m8YsK8LsV+x52VKLjknIutNuU6Ow24UoyiWDRlR3cAU0+q7iKnGhJQhRdVZSyWAtl3d5rqs983jbRn6t2WAbXazWvhxsdRb7rwq3ouR5D0LMgx+IbK3ZWsPtOlcXk4/xK25d7SCgftvlGew+l+g==[/tex]
举一反三
- 将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)
- 【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=0 (3) 1/8
- 设随机变量X的概率密度为[img=212x82]1802f2b4fe7c852.png[/img]令Y = X2,F(x,y)为二维随机变量(X,Y)的分布函数,则F(-1/2, 4) = ( ). A: 1/4 B: 3/4 C: 0 D: 1/8
- 设随机变量X的概率密度为[img=212x82]18031e952377dee.png[/img]令Y = X2,F(x,y)为二维随机变量(X,Y)的分布函数,则F(-1/2, 4) = ( ). A: 1/4 B: 3/4 C: 0 D: 1/8
- 设随机变量X的概率密度为[img=212x82]18031e94366cd25.png[/img]令Y = X2,F(x,y)为二维随机变量(X,Y)的分布函数,求 F(-1/2, 4) = ( ). A: 0 B: 1/8 C: 1/4 D: 3/4
内容
- 0
设随机变量X的概率密度为[img=212x82]1802f2b32119fcb.png[/img]令Y = X2,F(x,y)为二维随机变量(X,Y)的分布函数,求 F(-1/2, 4) = ( ). A: 0 B: 1/8 C: 1/4 D: 3/4
- 1
已知随机变量X的分布列如下,求X的分布函数。 X 0 1 2 3 p 1/2 1/4 1/8 1/8
- 2
已知X的分布律为P(X=-1)=1/4,P(X=0)=1/4,P(X=1)=3/8,P(X=3)=1/8,则E(2X+1)=( ),E([img=42x20]17e0c5d65688ad3.jpg[/img])=( )。
- 3
下面是图的拓扑排序的是?(多选)[img=340x240]1802faef6ebcc2a.png[/img] A: 2 8 0 7 1 3 5 6 4 9 10 11 12 B: 2 8 7 0 6 9 11 12 10 1 3 5 4 C: 8 2 7 3 0 6 1 5 4 9 10 11 12 D: 8 2 7 0 6 9 10 11 12 1 3 5 4
- 4
函数[img=73x26]1803467b5e85eef.png[/img]的极值为( ). A: f(0)=1 B: f(1)=2 C: x=0 D: x=1