用不定积分的分部积分公式计算[img=69x29]17e0c2138d2ce67.png[/img],选择( )作为公式中的[img=13x15]17e0a68acafbdb4.png[/img]。
未知类型:{'options': ['', ' [img=35x19]17e0aae594be5f5.png[/img]', ' [img=28x19]17e0c0ed321f915.png[/img]', ' [img=49x19]17e0c21399c1582.png[/img]'], 'type': 102}
未知类型:{'options': ['', ' [img=35x19]17e0aae594be5f5.png[/img]', ' [img=28x19]17e0c0ed321f915.png[/img]', ' [img=49x19]17e0c21399c1582.png[/img]'], 'type': 102}
举一反三
- 函数f(x)=[img=40x76]17e0bf8d391c13e.png[/img]的不连续点为( ) 未知类型:{'options': ['x=0', ' x=[img=43x39]17e0bf8d4513730.png[/img](k=0,±1,±2,…)', ' x=0和x=2kπ(k=0,±1,±2,…)', ' x=0和x=[img=43x39]17e0bf8d4513730.png[/img](k=0,±1,±2,…)'], 'type': 102}
- 若曲线积分[img=218x37]17e0ac07a409535.jpg[/img]与路径无关,其中f(x)一阶连续可导,且f(0)=0,则f(x)= 未知类型:{'options': ['', ' [img=125x50]17e0ac07b7272eb.png[/img]', ' [img=130x54]17e0ac07c12b4f8.png[/img]', ' [img=30x39]17e0ac07ca7680a.png[/img]'], 'type': 102}
- 若曲线积分[img=218x37]17e43c4de82e223.jpg[/img]与路径无关,其中f(x)一阶连续可导,且f(0)=0,则f(x)= 未知类型:{'options': ['', ' [img=125x50]17e43c4df9d319c.png[/img]', ' [img=130x54]17e43c4e0252039.png[/img]', ' [img=30x39]17e43c4e0ad03c0.png[/img]'], 'type': 102}
- 以下4个集合中是空集的是() 未知类型:{'options': ['{X|[img=28x38]17da5873b8265d2.png[/img]-1=0}', ' {X|X-1=0}', ' {X|[img=28x39]17da5873d47c123.png[/img]=0}', ' {X|[img=28x39]17da5873d47c123.png[/img]+1=0}'], 'type': 102}
- 求[img=143x21]17e440eb5976ae1.jpg[/img]的定义域 未知类型:{'options': ['', ' [img=38x33]17e440eb6bdd78b.jpg[/img]', ' 0<;x', ' 0<;x<;1'], 'type': 102}