下列各微分式正确的是()。
A: xdx=d(x^2)
B: cos2x=d(sin2x)
C: dx=-d(5-x)
D: d(x^2)=(dx)^2
A: xdx=d(x^2)
B: cos2x=d(sin2x)
C: dx=-d(5-x)
D: d(x^2)=(dx)^2
举一反三
- 8. 下列不等式正确的是 A: $0\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}$ B: $0\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}$ C: $\int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}\lt 0\lt \int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}$ D: $\int_{0}^{\frac{\pi }{2}}{\cos (\sin x)dx}\lt 0\lt \int_{0}^{\frac{\pi }{2}}{\sin (\sin x)dx}$
- 下列等式成立的是( ) A: \(\int \ln xdx = {1 \over x} +C\) B: \(\int {1 \over x}dx = - {1 \over { { x^2}}} +C\) C: \(\int \cos xdx = \sin x +C\) D: \(\int {1 \over { { x^2}}}dx = {1 \over x} +C\)
- $\int {{1 \over {3 + 5\cos x}}} dx = \left( {} \right)$ A: ${1 \over 4}\ln \left| {{{2\cos x + \sin x} \over {2\cos x - \sin x}}} \right| + C$ B: ${1 \over 4}\ln \left| {{{2\cos {x \over 2} + \sin {x \over 2}} \over {2\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ C: $\ln \left| {{{\cos {x \over 2} + \sin {x \over 2}} \over {\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ D: $\ln \left| {{{\cos x + \sin x} \over {\cos x - \sin x}}} \right| + C$
- $\int {{{x\cos x} \over {{{\sin }^3}x}}} dx = \left( {} \right)$ A: $ - {x \over {2{{\sin }^2}x}} - {1 \over 2}\tan x + C$ B: $ - {x \over {2{{\sin }^2}x}} - {1 \over 2}\cot x + C$ C: $ - {x \over {2{{\cos }^2}x}} - {1 \over 2}\cot x + C$ D: $ - {x \over {2{{\cos }^2}x}} - {1 \over 2}\tan x + C$
- \( \int {\cos \ln xdx} = \)( ) A: \( {x \over 2}(\cos \ln x + \sin \ln x) + C \) B: \( {x \over 2}(\cos \ln x - \sin \ln x) + C \) C: \(- {x \over 2}(\cos \ln x + \sin \ln x) + C \) D: \(- {x \over 2}(\cos \ln x - \sin \ln x) + C \)