已知三阶矩阵`A`的特征值为`-1,1,2`,`A^**`表示`A`的伴随阵,则矩阵` B=(3A^**)^{-1} ` 的特征值为( )
A: `1,-1,2`;
B: `\frac{1}{6},-\frac{1}{6},-\frac{1}{3}`;
C: `-\frac{1}{6},\frac{1}{6},\frac{1}{3}`;
D: `\frac{1}{2},-\frac{1}{2},-1`。
A: `1,-1,2`;
B: `\frac{1}{6},-\frac{1}{6},-\frac{1}{3}`;
C: `-\frac{1}{6},\frac{1}{6},\frac{1}{3}`;
D: `\frac{1}{2},-\frac{1}{2},-1`。
举一反三
- (2)、\(X\)的三阶中心矩为 A: \(0\) B: \(\frac{1}{12}\) C: \(\frac{1}{6}\) D: \(\frac{1}{3}\)
- 设`\n`阶方阵`\A`满足`\|A| = 2`,则`\|A^TA| = ,|A^{ - 1}| = ,| A^ ** | = ,| (A^ ** )^ ** | = ,|(A^ ** )^{ - 1} + A| = ,| A^{ - 1}(A^ ** + A^{ - 1})A| = `分别等于( ) A: \[4,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] B: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n + 1)}^2}}},2{(\frac{3}{2})^n},\frac{{{3^n}}}{2}\] C: \[4,\frac{1}{2},{2^{n + 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\] D: \[2,\frac{1}{2},{2^{n - 1}},{2^{{{(n - 1)}^2}}},2{(\frac{3}{2})^{n - 1}},\frac{{{3^n}}}{2}\]
- 设λ=2是可逆矩阵A的一个特征值,则(\frac{1}{3}A2)-1+E的一个特征值是() A: \frac{7}{3} B: \frac{1}{3} C: \frac{7}{4} D: \frac{5}{2}
- Solve $\int_{-\frac{1}{2}}^1{1-x^2}dx=$? A: $\frac{\pi}{3}+\frac{\sqrt{3}}{8}$. B: $\frac{\pi}{2}$. C: $\frac{\pi}{6}+\frac{\sqrt{3}}{4}$. D: $\frac{\pi}{4}$.
- 已知随机变量$(X,Y)$服从二维正态分布$N(1,0;9,16;-\frac{1}{2})$,则$Z=\frac{X}{3}+\frac{Y}{2}$的数学期望和方差分别为 A: $\frac{1}{2};3$ B: $\frac{1}{3};3$ C: $\frac{1}{3};11$ D: $\frac{1}{2};11$