设三阶矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有特征值[tex=3.5x1.214]jK/4mDJ9YwrtF9jr1GiXfg==[/tex]证明 [tex=7.071x1.571]h0eo7e2yQ218uB4p9fWYdbZ3FXhoE4TSUpMKb7fE2RyuTpAzogBgfeqaBwOvr3zY[/tex]可对角化,并求[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的一个相似对角阵。
举一反三
- 已知三阶矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为 1,-1,2,设矩阵[tex=5.143x1.357]GXZk0g8n9F5fV4GyCGm9mygQSr4Yd8XrtrSrBIW9ziE=[/tex] .(1) 试求矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的特征值; (2) 问矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]是否可以对角化,说明理由,如果[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]可以对角化,指出与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]相似的对角矩阵.
- 设矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 相似, 其中[tex=8.643x3.643]3BT1BgBZQ5uJXxD5dg+w26muwh1xN1sRXO8Q3eF5f+iTpB6kD/3/7F/Sewwa3hxWs7TCQWFyZq0QSUW2LGcSxj3jay92Ev0sXUjwbpJxe2w84vpk6B1wjRlgxeXY7DUa[/tex], 已知矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]有特征值 1,2,3, 则 [tex=1.357x0.786]C5gMMrS05DsgTY0BSnf1fg==[/tex] A: 4 B: -3 C: -4 D: 3
- 已知 3 阶矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为 0,-2,3,且矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]与[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]相似,则[tex=4.643x1.357]/AnguSGMpt5KutuBHaXS+w==[/tex][input=type:blank,size:4][/input]。
- 设 4 阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足条件[tex=13.429x1.571]pNXwj7dxoGbcprO3/HATinbMcrt8sC5y1uPd3TRH6ssCiv8WtIXVXb9cSHXuJP20[/tex], 其中[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]为 4 阶单位矩阵,求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的伴随矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有一个特征值。
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为同阶方阵,若[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]相似,证明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]有相同的特征值。