求下列曲线族的包络.[tex=6.357x1.429]vz3hQgq//YX0suu2LWHKK9eC4mn2eTMRN2eXO8X99OY=[/tex]
举一反三
- 求曲线族 [tex=6.357x1.429]+48R1GSdSQSV5+b2hDZ0SN7ELcfRGQk67RWLsZgdREM=[/tex] 的包络, 并绘出图形
- 【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=0 (3) 1/8
- 求下列不定积分.[tex=7.286x2.643]28VI4S//fW038PiMAbBHktfj3FfJYocy4+TgcP5gH+6DCjcL5MVe5w4GLCJx2oaC[/tex].腺 由于 $\sin ^{4} x+\cos ^{4} x=\left(\cos ^{2} x-\sin ^{2} x\right)^{2}+2 \sin ^{2} x \cos ^{2} x$$=\cos ^{2} 2 x+\frac{1}{2} \sin ^{2} 2 x$原式 $=\int \frac{\mathrm{d} x}{\cos ^{2} 2 x+\frac{1}{2} \sin ^{2} 2 x}$
- 应用Matlab软件计算行列式[img=110x88]17da5d7b00219d6.png[/img]为( ). A: x^2 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 B: x^3 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 C: x^4 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 D: x^5- 6*x^2*y^2 + 8*x*y^3 - 3*y^4
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}