求半径为 a,中心在圆周[tex=7.429x1.429]ZCKGQJBIC9T8V2Y2rApkwGh16Xcd3AjcQgPmF5Osenyz9fb943+us5T6/XpjyBoF[/tex]上的球面族的包络,特征线和脊线。
举一反三
- 求球面族[tex=9.214x1.5]B8KMlimDlVYyBw/Hhwiz84kbGJclLtdSHc4Nfe5eSoI=[/tex]的包络和特征线,包络的脊线存在吗?
- 输出九九乘法表。 1 2 3 4 5 6 7 8 9 --------------------------------------------------------------------- 1*1=1 2*1=2 2*2=4 3*1=3 3*2=6 3*3=9 4*1=4 4*2=8 4*3=12 4*4=16 5*1=5 5*2=10 5*3=15 5*4=20 5*5=25 6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36 7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49 8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64 9*1=9 9*2=18 9*3=27 9*4=36 9*5=45 9*6=54 9*7=63 9*8=72 9*9=81
- 【计算题】5 ×8= 6×4= 7×7= 9×5= 2×3= 9 ×2= 8×9= 7×8= 5×5= 4×3= 5+8= 6 ×6= 3×7= 4×8= 9×3= 1 ×2= 9×9= 6×8= 8×0= 4×7=
- 计算曲线积分\({\oint_L {({x^2} + {y^2})} ^3}ds\),其中\(L\)为圆周\(x = a\cos t,y = a\sin t(0 \le t \le 2\pi )\)。 A: \(2\pi {a^7}\) B: \(2\pi {a^6}\) C: \(2\pi {a^5}\) D: \(2\pi {a^8}\)
- \(二次型f(x)=x^{T}\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}x的秩为\)