试将方程[tex=7.143x1.214]LP9CFG2vY1TzVUUChKG1WOyFItPvNVd7izUjy/FJm/U=[/tex]用适当的坐标变换变成[tex=2.071x1.143]j9fijFvIyCgEUgoAtvqXdQ==[/tex].
[b]解法一 [/b](参考 Euler 角)将已知方程写成[tex=9.357x2.786]hl1bmR6Xjco8Mi5B11/ctz/cnzh53kOheFLwwn/CmJw6ZPT9od6vnmxl6lwBZoxZ[/tex],利用平移[tex=2.214x1.143]qMUtDz4co1/IUd/w/7sHIA==[/tex],[tex=3.714x2.357]0Xwg6hVuxtlgZkmvOJvY8bMC6oPUFeCC0jP222zJsoY=[/tex],[tex=2.0x1.143]IgGLgyfxYE8Sjnr8fWoFRw==[/tex],可得[p=align:right][tex=6.643x1.357]I/dVu8g6R5UedAHO8SoZhFXd3yMSb6RQA6utDcaah6swZpDa3WrscZ6y/PDAryrU[/tex]. (1)取直线[tex=6.429x2.929]7EJHVCtO2IWq3KpdB+jQslRxmDcA1mcozZf+FiGzDkJbR7eiFDtLalMnUbaSCwdOElct7svDZBVcvcPJi6GAEWblxFe5O1nVlnqXzDVkQDoI4Kvoud9WyWW8fXUspwnp[/tex]为新[tex=1.0x1.143]uDURn6KTVSzuxHB9PQPJUjgZCNfuZ+E4cktMixAfUQc=[/tex]轴,即绕[tex=0.786x1.143]Ex2vqmY4XQXLlfB9Do9iaQ==[/tex]轴旋转[tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex]角,其中[tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex]满足[tex=4.571x2.357]MD+CHS0JGJr8swFQQ1HCJgbYb0FA4N6aW+GapL8BmdE=[/tex],旋转变换为[p=align:center][tex=10.357x4.5]7EJHVCtO2IWq3KpdB+jQsrB6api6XTiW4A20y5aW7YwOvqkkIAkJoxRWPQK0LBMR/mihAF91HdjklSgbupMgHNDSOaD4RafIzPvgmHOfy/W2zM2cjtyAukV3BroKsAl5U9aXYt+tMW14vOMBLGtTkXPMveyd5el5wynturZmbMHQAIAkWngCXdDi8W84bua9apj8tQz77vnUemw622+go/oGfdFD30gNnrQIu0K8cBvBi1JhzKUbuD7CMYoq1h3EokA/v1NR7HGuH0glDRqRVMzPKLnEzLIvHRBN9Hxgcag=[/tex],代入(1)得[p=align:right][tex=7.143x1.5]vNGTU779IEL2Ffk4wgbXo5G+3go6kZ7MC5ipn1hiTOy9jQ0IP08XFXxa3t1tRyzHsRmq70KfCWPomf68udVniw==[/tex]. (2)再取旋转角[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex],使其满足[tex=5.357x2.643]V1SjnAVIAwWtjCli7rKzPswvn6eGQV6SUdnvICJOzAucEtepJ20eFEM7MXAuULyz[/tex],经过绕[tex=1.0x1.143]uDURn6KTVSzuxHB9PQPJUjgZCNfuZ+E4cktMixAfUQc=[/tex]轴旋转[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]角的变换:[p=align:center][tex=10.786x4.5]7EJHVCtO2IWq3KpdB+jQsrB6api6XTiW4A20y5aW7YwJbvUEbRe0eie7WXS3ADvvSAcCVtvDrG7ZnLDvJorZxSxRQAVuj6dkIDhPiAS+Lxv2+lbi74sW8L8XHV2Ovfe8oWudI8hN/ASM6yLH+vSUqHw6gIU5DSjRKy3Q/eZrYrxsxXZFECkbUq0mbiyFjtpBLYbALmlpvDIGfM7B82ncrBmosKnoT8NSPwGge+vylwJoasyywDs4euE3tTM2f8ON[/tex],就得到[tex=2.214x1.071]DVrgPDJ20zwhaHNwCuYehw==[/tex].以上三个变换的乘积就是所求变换.[b]解法二 [/b] 已知平面方程可化为[tex=9.357x2.786]2SkBlWbwjiDBBod4TxP807FXWju/jTEmJlv7GwbZ13S+yB2p0hdNyZM7JTI0ab+b[/tex],具有单位向量[p=align:center][tex=13.5x2.714]FgMErMawA9mwj3YfYPraV3ayfgcxllJQJGritRjEqZLqT1YpuJkpKZgBNPvF1K3U41Qn2lhygTB7jabkHI6Nh55HRRlGPtT5Lo2McKarElU=[/tex].取与[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]正交的单位向量[tex=6.0x2.714]PYZSmeZCw6xom/NZGwJdnmMRZUzOvLh8/w5cEotRioUDULh+HE3fkqzxWKflXiTp[/tex],[tex=17.714x3.929]9RTetLxmelhjiPRP3d4TB1cXGZQ8ssWu5iaGL78KktePIC9rrTGFuNxCb9P7OshNWajo6saKGhKBaxTVFEi2YlfL5HisXfV79FOms60Inuld1fB5evPifSYGpiYWLs2hjpajhKy33kqaL2oUTmnMOviBv/CX9nJfKnFW3l73oOgaAKsaAmwx4r353uIqrSYU[/tex].在以[tex=5.071x2.786]xw2jC5/X8ey1i41UxRd7S/SIGVi0lhV7uqnX7h+8RuY=[/tex]为原点,以 [tex=4.143x1.357]yPhJXQIl8Vkkaabg35IZOBjFSuT2/W/B9GA6Fqb3AMeRc0u9oePLuHIPnovlUIp8[/tex]为基向量组的坐标系下,原平面方程即化为[tex=2.071x1.143]KvLybXIZhVJ1Zh9APBkepA==[/tex],其中[tex=17.857x3.357]MvtHC7hiwLteallCqj2vBjwBi4h3iX56XlVkJgmJyruEcmfgGVw5O8hGqTZy6veMybFDqLe8GBBh4STiDFHuIVeHTCl2uzm84yfUkE8KDfMDYrLDWTsXCX/yKoNxxpK+guwBaBXhl1uM9cKujhazUVZwZ5ggXaIoTn0/nZN0z98hXkKjW53/72H67PxqhcFh4vHzm3foqU9KPrDT0ad6lQ==[/tex].[b]解法三 [/b] 令[tex=23.714x2.643]U1OXxq0wYVb7UCAHR81xo2o5QnWyZuqo3bwAIRt1A20Dd3hII7Rsk7p6S9KPsFxcPV1vZS0FDsjfPjIOxzyFsV5cmLFNz3Ex8NgaP6vVaJuTTLu2scFQxMWigqmd8w/Ta9aHXYlFDRlWUrjxDUddpQ==[/tex].取两个互相垂直的单位向量[tex=0.857x1.0]NE5viVQtUJ1Z7sNTvKYsYg==[/tex],[tex=0.857x1.0]iB1uBost/kvxcpYUJQ/2SA==[/tex]使它们都与向量[tex=4.786x1.357]KY0d3bTe6gM42HYpZ92rcA==[/tex]垂直,并且使[tex=0.857x1.0]6w3s5yvU+YGAbD8PTHecIg==[/tex],[tex=0.857x1.0]8KujEsbM8zTzbA+hMPr8XQ==[/tex],[tex=0.857x1.0]IO8KINLIzoztXQnBtukeQw==[/tex]是右手系. 比如可取[tex=7.5x2.643]rIyib7kNlR/VZNZ3CnkDIJrab+gkWTF91GFEgE/Rj5T+/XfxOYRuoisqDn0Xxge1[/tex],[tex=13.429x2.643]4VQwG6XTRf73xkQ4HopjNgst6hE05/mui02N//s6nYdC8eVgYxJm2AptFDgz4hzqwzOEiWzTetJjkkHCIMReBA==[/tex].令[tex=6.643x2.643]RFCEJudsCzx/VIvETT7BylEkMG1FSUDXul/bqlF7klb6wsHIVAQE7t43KKo58G4P[/tex],[tex=1.571x1.357]MZ5LZumd6Qbi+TmXYuljuA==[/tex][tex=9.5x2.643]A9/Zfy8ZBoH1sbiuu4b/sOzbBfdqjEASi5CD/jwvNHtcivmnud7OAKv+i4ikHvY7[/tex]即可.
举一反三
- 证明方程 [tex=5.643x2.643]veMIbIHrCKyfJD6p8CsZieV/mC7jauoF+RoXvFL11rxcZNCHFWI1bp9PcV7QjXfuLz8jFJG3FjoRv6p+Zfkmnw==[/tex] 经变换 $x y=u$ 可化为变量分离方程,并由此求解方程:[tex=8.429x1.571]8HRcqzX3v4Y2lj/bxKtUWyTaeJGkmxPo/lnb2KrFyUkh3bTJjq7hgObaU0hI8NF68rCBoV64ntgfXyGigpHhLQ==[/tex]
- 利用坐标变换,将[tex=6.143x1.214]8xB8Ie2BwnoJxEvluWlTxA==[/tex]变成 [tex=2.357x1.357]zmzO1b/3hpUW6eHXHJQhKc/iMLdtqxcgrCg/+SCLaQw=[/tex]
- 已知函数[tex=4.643x1.286]Q2e9U1XyxLBMsCFsg3Cd2w==[/tex]满足方程[tex=14.714x2.357]V9fVXReHUrcmKJSTnoNlS/YIutsDa3VyMHeW/Ozlvu6aCOCl9nJxBO5q2LZN+RPOxwUpvCHg4ldmvdd8Hcew28x9yb69jwKzmlGwbdtDDWUGw93MM62pkM2eAynmjk0N/sxrFZ2XYj0wg+7sbO85VWkIOu0u8hq23RoEcPxdGtbmSIVZzBIC+eurje1bwbcHiqIDmyQ3+hN4WEpSf6L3Tg==[/tex],(1)试选择参数[tex=0.643x1.286]vYiGJJ9TAtvnQmM1PsOB8g==[/tex],[tex=0.643x1.286]mI2l8V/Tmuo7C2MtPPAzQQ==[/tex],利用变换[tex=9.643x1.286]lG//pp3jkxJROCr2FFJb/VcM1cOO7R0vMtobdoLdeEi+vNdPAOxvQ6GzArfBWRPn[/tex]将原方程变形,使新方程中不出现一阶偏导数项;(2)再令[tex=4.071x1.286]/GQ8YWkvfBP7euDv9qzboA==[/tex],[tex=4.071x1.286]6B4xoPjdd1wVwLrSNH7srQ==[/tex],使新方程变换形式。
- 45℃时, 5.20L容器内装有[tex=5.286x1.214]7FUf6G34wQ+cTlTkXoDUG71IPQvL776qaLterADqaa0=[/tex]。试计算[tex=2.0x1.214]GkVavHWOYgOBlIeX7B1Ftg==[/tex]的压力:(1)用理想气体方程;(2)用范德华方程。
- 在化合物[tex=3.143x1.214]v4ZSy342c4rYHJ17K2Seyg==[/tex]的质谱中, [tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]和[tex=2.286x1.143]6xy5cvv57RhdtLjINMq7Bw==[/tex]峰的相对强度比应为( ) A: 98. 9 : 1. 1 B: 98. 9 : 0. 02 C: 2 : 1 D: 1 : 1 E: 3 : 1
内容
- 0
用适当的变换将方程 [tex=6.929x1.429]fOaIfa35tG+Q4agdkW1dh1pfUQKtxon7abt6qxNh1PM=[/tex] 化为可分离变量的方程,并求出通解.
- 1
用适当的变换将下列方程化为可分离变量的方程,并求出通解[tex=5.929x1.5]By58ejDam90c98+I2RT93KlRqbjho8NvaRlhE2K7eu0=[/tex].
- 2
用适当的变换将方程 [tex=5.5x1.5]By58ejDam90c98+I2RT93KlRqbjho8NvaRlhE2K7eu0=[/tex] 化为可分离变量的方程,并求出其解.
- 3
在柱面坐标里,下列方程表示什么曲面?(1)[tex=1.857x1.0]4ap1mEXDgiPNuYPrnWBZSw==[/tex](常数 );(2) [tex=2.071x1.0]/J4EfYLUfsJklg5mBH06uQ==[/tex] (常数).
- 4
如果X满足[tex=1.0x1.214]uDLq1pltx8bidzPpXavtVw==[/tex]公理和[tex=1.0x1.214]HSZQQmMoQLPTE8orMMvtgA==[/tex]公理,则也满足[tex=1.0x1.214]9/dZqDJTFQ9zWNw2dnPh4g==[/tex]公理。