• 2022-07-01
    [tex=1.643x1.357]QEos0FZVoxidwAY2Qi/JJQ==[/tex]是定义在半无界区间[tex=2.786x1.357]qHzS+IekiKDQ9GNDYiUdxA==[/tex]上的函数[tex=10.857x3.357]b7Fls7iATEUWHjrNBnbaR/Jzs7x39/WdEQFVS1fO4QK0f2hsgkGAvAEvh74Doy1lgrh6tASZkXQkLWvXbYiYFUAnzIbm7q96yumjWda5zxE=[/tex]在边界条件[tex=3.429x1.429]6fsKQU9iKI0rzJOj39exrQ==[/tex]下,将[tex=1.643x1.357]QEos0FZVoxidwAY2Qi/JJQ==[/tex]展为傅里叶积分;
  • 由于边界条件[tex=3.429x1.429]6fsKQU9iKI0rzJOj39exrQ==[/tex],则[tex=1.643x1.357]QEos0FZVoxidwAY2Qi/JJQ==[/tex]须展开为傅里叶余弦积分即[tex=10.714x2.643]PTVdc+UCjO+4HSgnh3PFKad/p4iofkBiLh0AAT8pMdZPMx/fV/vb1Qnk0lgRiPtKVPTufQIke1zsSFLE2x0lBGpgL6wNYl/6z4lybQhZQ38=[/tex][tex=24.714x2.786]k7qXWeLgX4apLZ2gXuKa2J+9i6J3hyHM0edyNeTCS9dhEKJ8ONHCW2RSEEmCKfct53YS+a6sxkCVnCPKu+GROkQSkXh9lz2GZZTzgM32sQoX1jeflepX5j+LukBS7aAoqffcXJQenmZ6VPtV+jpllVOqqsXhVmDVPeETyYc4+mRopCD7mluMrEOMlO6fQDUUvampWlLoaP3CllT5WbdIzrdWijsb044dGCKl4DYKI8o=[/tex][tex=24.143x2.643]PTVdc+UCjO+4HSgnh3PFKZn7O+GzVimaiYw6c2gdXCj59dMghWhMy9gsHBPC/egcWeCS9iXY2Yk2ZCdwYm5Ee9MQe7QmYJqWYNE2Qeh28Kg9C8RgDcBkJpmAXBADEahMSTrcyjiFSSiEwqfv6wORUXlD+dpmSDKA/P3FbG2jWuwnGlZciWMAPUcS96PnNtBqfoliq49MRkA7kHDGEtfvrzjpAJx9uSziMzgnNTUIkVspEabLFDPOnm3NZaPelvIU[/tex]

    内容

    • 0

      设[tex=9.286x1.357]JdWYfGtp5xNLOqpyIVhygjmb5t6NhuQKLsfnOlCdADU=[/tex]其中[tex=1.643x1.357]QEos0FZVoxidwAY2Qi/JJQ==[/tex]二阶可导,[tex=2.786x1.357]XFjcQ0Gsv9lEUsq2Ht4/nQ==[/tex]具有二阶连续偏导数,求[tex=2.429x2.714]Hvc3DRViYQYrFC7OWnSXU8sm/Pmd4fpXiN2+clQYNt4lDMw+d/AngnlMuvf4C5Ve[/tex].

    • 1

      设函数f(x)在[tex=3.286x1.357]64m0xE4nFlaKGIakApV0PA==[/tex]上连续,且有f(0)=0及f'(x)单调增,证明:在[tex=3.5x1.357]vgrW1/jK/GZ1TOWaPFIQWA==[/tex]上函数[tex=5.071x2.429]KmCvFjqAEA9O51+9erVGP+KtDDqVtXZQWqxj1eiTO5k=[/tex]是单调增的。

    • 2

      周期函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的周期为[tex=1.071x1.0]cWYnFY7tUlCT6WhMhv7goA==[/tex],试将f(x)展开成傅里叶级数,如果f(x)在[tex=2.929x1.357]FPqH6WHujNUJq9Xq0SIplg==[/tex]上的表达式为:[tex=3.929x1.5]wwWic7scd5c6929ljvvkuQ==[/tex][tex=7.0x1.357]Oy5aLxKJPd5t68LIQjG2E0wMwRmACKgIr/D8IhaESKI=[/tex] .

    • 3

      设[tex=1.643x1.357]QEos0FZVoxidwAY2Qi/JJQ==[/tex]是在[tex=3.357x1.357]o0la+bcvT8Dt4VmZXWH31g==[/tex]上所定义的几乎处处有限的可测函数.那末[tex=1.857x1.357]bawv/j+LZ1l+o4ciN/29dA==[/tex]上有如下的单调减函数[tex=1.643x1.357]Zc3VsateyNP94/Q7WzmJgQ==[/tex], 关系[tex=10.357x1.357]DcWqAwkgBy0Edb2v99+PrEMu2dVaM7APekvlfo2bkaY=[/tex]对于任何实数[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]成立. 

    • 4

      设[tex=9.357x1.357]RQ1Rf7mZVROyElKiWF4od8pL54L/1399H9W3X6F4zcE=[/tex]是方差为[tex=1.0x1.214]DD18FbyBUBjAsUtK4hq+hg==[/tex]的布朗运动,[tex=1.643x1.357]QEos0FZVoxidwAY2Qi/JJQ==[/tex]和[tex=1.643x1.357]Zc3VsateyNP94/Q7WzmJgQ==[/tex][br][/br]是[a,b]上的两个连续可微函数,试证:[tex=24.214x6.071]a0s3MH7cLIdmiBRR0YN06xEC/tZ74l1fRAQEqZ4GyaP0/3SVo7pR7Oz009DuabWYTR+0C9QxM5WRMuATPKNT6zSuPhFCmM36LMT+BcINc0cmcIh+MqWuyew6grLDwxiqy27lur2Ox6sgdMQ3pS+kujZtaJs6km7kcU8LrqjL2557n8mUVoJJ/GqdHkNep3Ngwf3EoRd0oCyeMPSViu4jvAT2s1sPhahCAAI6MMhrYHMCVTWbUiCTmjOOWODheiJmSi+vOqOFqqePXJLq8le2AFbl3XzldukRhH4ty5cC2q0=[/tex]