带余除法中设f(x),g(x)∈F[x],g(x)≠0,那么F[x]中使f(x)=g(x)h(x)+r(x)成立的h(x),r(x)有
举一反三
- 带余除法中设f(x),g(x)∈F[x],g(x)≠0,那么F[x]中使f(x)=g(x)h(x)+r(x)成立的h(x),r(x)有()。
- 带余除法中设f(x),g(x)∈F[x],g(x)≠0,那么F[x]中使f(x)=g(x)h(x)+r(x)成立的h(x),r(x)有()。 A: 根据F[x]而定 B: 两对 C: 无数多对 D: 唯一一对
- 带余除法中设f(x),g(x)∈F[x],g(x)≠0,那么F[x]中使f(x)=g(x)h(x)+r(x)成立的h(x),r(x)有几对?() A: 无数多对 B: 两对 C: 唯一一对 D: 根据F[x]而定
- 设$f(x),g(x),h(x)$是三个实系数多项式,且$$f^{2}(x)=xg^{2}(x)+xh^{2}(x)$$则$f(x),g(x),h(x)$满足条件()。 A: $f(x)=g(x),f(x)\not=h(x)$; B: $f(x)=g(x)=h(x)=0$; C: $f(x)\not=g(x),g(x)\not=h(x)$; D: $f(x)\not=g(x),g(x)=h(x)$.
- 带余除法中f(x)=g(x)h(x)+r(x),degr(x)和degg(x)的大小关系是()。