n[ln (n+2)-ln n]=___cb8cf031e72ec86a2a81ee8541d6d372.gif
举一反三
- 下列数列中,无界但不是无穷大的是 A: $\frac{n}{\ln n}$ B: ${{(-1)}^{n}}{{n}^{2}}+n$ C: $n\sin \frac{n\text{ }\!\!\pi\!\!\text{ }}{2}$ D: $\frac{{{\text{e}}^{n}}}{n!}$
- 下列数列中,不是无穷大的是 A: $\frac{n}{\ln n}$ B: $-{{n}^{2}}+n$ C: $\frac{n({{n}^{\frac{7}{3}}}+1)}{{{n}^{\frac{15}{4}}}}$ D: ${{(-1)}^{n}}{{n}^{3}}+{{n}^{2}}-10n$
- 求极限lim(n->∞){n*[n^(1/n)-1]}/ln(n)
- Which one of the following sequences has a finite limit? A: $\ln(n),\;n=1,2,\cdots$ B: $\ln(\sin(n)),\;n=1,2,\cdots$ C: $\sqrt{n^2-1}-n^{1/3},\;n=1,2,\cdots$ D: $ \sin\frac{1}{n},\;n=1,2,\cdots$
- 函数$y = \ln x$,则${\left( {\ln x} \right)^{\left( n \right)}} = {\left( { - 1} \right)^{n - 1}}{{\left( {n - 1} \right)!} \over {{x^n}}}$。( )