Put the following portions in their appropriate places in the half-finished leaflet.
1.http://course.media.unipus.cn/edx/course-v1:Unipus+efc2+2018_03/resource/image/a8e663dbb7fe27a0ca302bd999fc2dddf0f46e4d.png?imageMogr2/thumbnail/730x1319http://course.media.unipus.cn/edx/course-v1:Unipus+efc2+2018_03/resource/image/d3cc001cefc4de2cf62d8e104ce0a23d2d51526d.png?imageMogr2/thumbnail/292x288
1.http://course.media.unipus.cn/edx/course-v1:Unipus+efc2+2018_03/resource/image/a8e663dbb7fe27a0ca302bd999fc2dddf0f46e4d.png?imageMogr2/thumbnail/730x1319http://course.media.unipus.cn/edx/course-v1:Unipus+efc2+2018_03/resource/image/d3cc001cefc4de2cf62d8e104ce0a23d2d51526d.png?imageMogr2/thumbnail/292x288
举一反三
- Watch Part 3 of the podcast and fill in the blanks. U4_1_1d.wmv 1. I'd like to be famous for doing something new and . 2. Um, these days, I'd like to be famous for doing something , I think. Ah, for the, sort of charitable work. 3. Maybe being . 4. I'd like to be well-known as a graphic designer, but that's not . 5. If I were to be famous, ah, I would like to be famous or an amazing , I think, or for perhaps, a medical cure, something to cure cancer. 6. I prefer to be anonymous. I like anonymity when I'm ./js/editor20150812/dialogs/attachment_new/fileTypeImages/icon_mv.gifhttps://ucontent.cdn.unipus.cn/edx/course-v1:Unipus+nhce_3_vls_2+2017_03/resource/image/7f00fd7f2e797cebdc950268a75ee8aa2a2e6e50.jpg?imageMogr2/thumbnail/750#w=52&h=52https://ucontent.cdn.unipus.cn/edx/course-v1:Unipus+nhce_3_vls_2+2017_03/resource/image/4a9ce7bf72fc86aad5ad4061f59cd60864ae8a64.jpg?imageMogr2/thumbnail/750#w=52&h=52https://ucontent.cdn.unipus.cn/edx/course-v1:Unipus+nhce_3_vls_2+2017_03/resource/image/279fbdf59f63c8941a5618fe8b7601add8d7d4cb.jpg?imageMogr2/thumbnail/750#w=52&h=52https://ucontent.cdn.unipus.cn/edx/course-v1:Unipus+nhce_3_vls_2+2017_03/resource/image/cd0a04df42884035e1c0143391e7db2dc4475867.jpg?imageMogr2/thumbnail/750#w=52&h=52https://ucontent.cdn.unipus.cn/edx/course-v1:Unipus+nhce_3_vls_2+2017_03/resource/image/6cba129457125cca3a5e3a05c5d82be7bdc81445.jpg?imageMogr2/thumbnail/750#w=52&h=52https://ucontent.cdn.unipus.cn/edx/course-v1:Unipus+nhce_3_vls_2+2017_03/resource/image/531629fb5c6a08ca8fb81dd3753b7d689617d411.jpg?imageMogr2/thumbnail/750#w=52&h=52
- 【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=0 (3) 1/8
- 下面是图的拓扑排序的是?(多选)[img src="https://i1.chinesemooc.org/course/formula/201610/eb69927aaf8baae83211ee3fadf836e7.png"] A: 2 8 0 7 1 3 5 6 4 9 10 11 12 B: 2 8 7 0 6 9 11 12 10 1 3 5 4 C: 8 2 7 3 0 6 1 5 4 9 10 11 12 D: 8 2 7 0 6 9 10 11 12 1 3 5 4
- 8、求积公式ò2 f (x)dx » 1 f (0) + 4 f (1) + 1 f (2) 的代数0 3 3 3精确度为( )。 A: 1 B: 2 C: 3 D: 4
- 下图所示机构自由度计算,( )是正确的。 A: mg src="http://p.ananas.chaoxing.com/star3/origin/cb07ca0fb12be985c301490389c1e187.jpg" B: F=3×7 –(2×9 + 2 – 2)– 2 = 1 C: F=3×7 –(2×9+ 2– 0)– 0 = 1 D: F=3×7 –(2×8+ 2 – 0)– 2 = 1 E: F=3×5 –(2×6+ 2– 0)– 0 = 1