F[x]中,若f(x)g(x)=2,则f(x^2)g(x^2)=
举一反三
- F[x]中,若f(x)g(x)=2,则f(x^2)g(x^2)=
- 设函数f(x)与g(x)在(a,b)上可导,考虑下列叙述: (1)若f(x)>g(x).则f"(x)>g’(x);(2)若f"(x)>g’(x),则f(x)>g(x).则 ( ) A: (1),(2)都正确 B: (1),(2)都不正确 C: (1)正确,但(2)不正确 D: (2)正确,但(1)不正确
- F[x]中,若f(x)g(x)=2,则f(x^2)g(x^2)=()。 A: 0 B: 1 C: 2 D: 3
- 设$f(x),g(x),h(x)$是三个实系数多项式,且$$f^{2}(x)=xg^{2}(x)+xh^{2}(x)$$则$f(x),g(x),h(x)$满足条件()。 A: $f(x)=g(x),f(x)\not=h(x)$; B: $f(x)=g(x)=h(x)=0$; C: $f(x)\not=g(x),g(x)\not=h(x)$; D: $f(x)\not=g(x),g(x)=h(x)$.
- 【单选题】若 f ( x ) = ( x − 1 ) x 2 − 1 2 , g ( x ) = x − 1 x + 1 ,则? A. f ( x ) = g ( x ) "> f ( x ) = g ( x ) B. lim x → 1 f ( x ) = g ( x ) "> lim x → 1 f ( x ) = g ( x ) C. lim x → 1 f ( x ) = lim x → 1 g ( x ) "> lim x → 1 f ( x ) = lim x → 1 g ( x ) D. 以上等式均不成立