将下列小题的二次型表示成矩阵形式。[tex=10.929x1.286]8cMNQRya94k31SMoLiD1mibwhfG+AJ7GqbDo3cFmNLkxB37KUBaraaiMk7Gdi2cS[/tex]
举一反三
- 将矩阵a=[1 2 3;4 5 6;7 8 9]改变成 b=[3 6 9;2 5 8;1 4 7]的命令是( )。
- 求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$
- \(二次型f(x)=x^{T}\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}x的秩为\)
- 设二次型[tex=6.929x1.286]AWIwyKTtUUxa9g9Wn2L4zvOGKwM/c3+Uolq+liBGCesRBlKZMQc5RwgoE5jilXhM[/tex]的秩2,其中矩阵[tex=9.571x4.786]K2vMsZ5TBuB8kq2pfBmYYJ2eWcB4o1CQazLVDpOIWwH56uvnNHUqmFHNWfDY4hXnX0mUoNf1JBt0bl6kcn56nJ8Eyo6Ob+02NGvqZR7ehaCrutHHNZcyCTfcUf+qurEHgFjYuC9Cpsg9SqFxbpsipg==[/tex] . (1)求实数[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]的值;(2)求二次型[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex]对应的矩阵,并将二次型化为标准形,写出所作的正交变换 .
- 【单选题】MATLAB中指令:a = 1: 2: 10,生成矩阵a,矩阵对应矩阵() A. [1 3 5 7 9 11] B. [1 3 5 7 9 ] C. [1 3 5 7] D. [2 4 6 8]