• 2022-10-26
    设D是由\( {x^2} + {y^2} \le 1 \) ,\( x \ge 0 \) ,\( y \ge 0 \) 所围区域,则\( \int\!\!\!\int\limits_D {x{y^2}} dxdy \) =( )
    A: \( {1 \over 5} \)
    B: \( {1 \over {15}} \)
    C: \( {2 \over {15}} \)
    D: 1
  • B

    内容

    • 0

      设\( \Omega \) 是由\( 1 \le x \le 2 \) ,\( 0 \le y \le 1 \) ,\( 0 \le z \le 2 \) 所围区域,则\( \mathop{\int\!\!\!\int\!\!\!\int}\limits_{\kern-5.5pt \Omega } { { x^2}yz} dv \) =\( {7 \over 3} \)

    • 1

      设\(D = \left\{ {(x,y)\left| { { x^2} + {y^2} \le 9,x \ge 0,y \ge 0} \right.} \right\}\),则\(\int\!\!\!\int\limits_D {(x + 3y)} d\sigma = \)______

    • 2

      \(\int\!\!\!\int\limits_D { { y \over x}dxdy }\)=______ ,其中\(D\)是由直线\(y = 2x\),\(y = x\),\(x = 2\)及\(x = 4\)所围成的区域

    • 3

      下列函数中,( )不是方程\( xy' + y - x^2 = 0 \)的解。 A: \( y = { { {x^2}} \over 3} + {1 \over x} \) B: \( y = { { {x^2}} \over 3} \) C: \( y = { { {x^2}} \over 3} + 2 \) D: \( y = { { {x^2}} \over 3} - {1 \over x} \)

    • 4

      已知\( y = \ln (1 + {x^2}) \),则\( y' \)为( ). A: \( { { 2x} \over {1 + {x^2}}} \) B: \( {x \over {1 + {x^2}}} \) C: \( {1 \over {1 + {x^2}}} \) D: \( { { {x^2}} \over {1 + {x^2}}} \)