设D是由\( {x^2} + {y^2} \le 1 \) ,\( x \ge 0 \) ,\( y \ge 0 \) 所围区域,则\( \int\!\!\!\int\limits_D {x{y^2}} dxdy \) =( )
A: \( {1 \over 5} \)
B: \( {1 \over {15}} \)
C: \( {2 \over {15}} \)
D: 1
A: \( {1 \over 5} \)
B: \( {1 \over {15}} \)
C: \( {2 \over {15}} \)
D: 1
举一反三
- 设\(D\)是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {x{y^2}} dxdy \) = \( {1 \over 6} \) 。
- 设D是由\( 0 \le x \le 1 \) ,\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| { { x^2} + {y^2} - 1} \right|} d\sigma \) = \( {\pi \over 4} - {1 \over 2} \) 。
- 设\(D\)是由\( - 1 \le x \le 1 \) ,\( 0 \le y \le 2 \) 所围区域,则\( \int\!\!\!\int\limits_D {\left| {y - {x^2}} \right|} d\sigma \) = \( { { 45} \over {16}} \) 。
- 设\(D = \left\{ {(x,y)\left| { { x^2} + {y^2} \le 4,x \ge 0,y \ge 0} \right.} \right\}\),则\(\int\!\!\!\int\limits_D {(x + y)} d\sigma = \) A: \(0\) B: \( { { 8} \over 3}\) C: \( { { 16} \over 3}\) D: \( { { 32} \over 3}\)
- 设\(D\)为\( 1 \le x \le 2 \) 和\( 0 \le y \le 1 \) 所围区域,则\( \int\!\!\!\int\limits_D { { x^2}{e^{2y}}} d\sigma \) =\( {6 \over 7}\left( { { e^2} - 1} \right) \) 。