已知函数f(x)对定义域R内的任意x都有f(x)=f(4-x),且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4则( )
A: f(2a)<f(3)<f(log2a)
B: f(3)<f(log2a)<f(2a)
C: f(log2a)<f(3)<f(2a)
D: f(log2a)<f(2a)<f(3)
A: f(2a)<f(3)<f(log2a)
B: f(3)<f(log2a)<f(2a)
C: f(log2a)<f(3)<f(2a)
D: f(log2a)<f(2a)<f(3)
举一反三
- 17da426f4cb2265.jpg,计算[img=23x22]17da426f58ddf0c.jpg[/img]实验命令为( ). A: f=diff(log(x),3)f=2/x^3 B: syms x; f=diff(log(x),3)f=2/x^3 C: syms x;f=diff(logx,3)f=2/x^3
- 17e0a756f3d6e2a.jpg,计算[img=23x22]17e0b849ab0b36c.jpg[/img]实验命令为( ). A: f=diff(log(x),3)f=2/x^3 B: syms x; f=diff(log(x),3)f=2/x^3 C: syms x;f=diff(logx,3)f=2/x^3
- 若函数$f(x)$具有二阶导数,且$y=f({{x}^{2}})$,则$y'' =$( )。 A: $f'' ({{x}^{2}})$ B: $2f'’ ({{x}^{2}})$ C: $2f’ ({{x}^{2}})+4{{x}^{2}}f’' ({{x}^{2}})$ D: $4{{x}^{2}}f’ ({{x}^{2}})+2f'' ({{x}^{2}})$
- 设函数f(x)=a|x|(a>0),且f(2)=4,则( ) A: f(-1)>f(-2) B: f(1)>f(2) C: f(2)<f(-2) D: f(-3)>f(-2)
- 已知\( y = {f^2}(x) \),假设\( f(u) \)二阶可导,则 \( y'' \)为( ). A: \( 2{[f'(x)]^2} + 2f(x)f'(x) \) B: \( 2[f'(x)] + 2f(x)f''(x) \) C: \( 2{[f'(x)]^2} + 2f(x)f''(x) \) D: \( 2{[f'(x)]^2} + f(x)f''(x) \)