• 2022-10-26
    点[tex=3.643x1.286]NDasSJubMHwAbjO0bWuoG6Y847t61iNKd5FkKmHlJQY=[/tex]在直线[tex=5.0x1.286]hxnG26Xw0M42LVcPEdbV4w==[/tex]上,且满足[tex=5.786x1.286]OeA2022LQR9UFtRcco25vg8Uw+Vn+/ovBzrRJt80+eA=[/tex],则点[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]到坐标原点距离的取值范围是
    未知类型:{'options': ['[tex=1.929x1.286]QYxxHVLZzd0+8qLK6An9FA==[/tex]', '[tex=2.429x1.286]Ivc0L1nN2gyhqKVbgFS7Qg==[/tex]', '[tex=2.429x1.286]InlmhqEGYrYXZs38l7tMTw==[/tex]', '[tex=2.429x1.286]jGXcNqyDY/F0NbkZy1/Zxg==[/tex]', '[tex=1.929x1.286]wXewTeFdmekfd0k638qicQ==[/tex]'], 'type': 102}
  • B

    举一反三

    内容

    • 0

      设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明至少存在一点[tex=3.643x1.357]lTsOOhJ85nTn3mrT2Mx0lw==[/tex]使[tex=6.286x1.429]JZ8spbP5y8lrG0FgeChLIS7LPAFOZNl0MwLjGUb1ZoE=[/tex]

    • 1

      已知点[tex=8.857x1.286]Cjo/JtXMrS9x982Ww+RJulRwvHwTTZza4DGVTDSPebI=[/tex],点[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex]在[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴上,且[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex]到[tex=2.5x1.286]2RUiDci9WF8R0kLIZXKikQ==[/tex]两点的距离相等,则[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex]的横坐标是 未知类型:{'options': ['[tex=1.143x2.0]Li611Zu+UmqjEjW14D9bRDBehbpS74wLekgzhInNogI=[/tex]', '2', '0', '-1', '-4'], 'type': 102}

    • 2

      [tex=8.429x2.857]QFdSgPtZeb4vss+fgMHYaoSHzEWw/2UlNe9qnJJgrI74FX8HWgZv9HRjPF77eNHbg6za3Ica93ODQTP7Mc6gcA==[/tex]则 [tex=3.143x1.357]KiwcT6mwR4irA4J3mE3lAg==[/tex] 未知类型:{'options': ['0', '-1', '2', '[tex=0.714x2.0]VTrdua9N5EDHg65xKeLgBTM97XTe+DYBUh6qrSwzUmk=[/tex]'], 'type': 102}

    • 3

      若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?

    • 4

      下列方程中是一阶微分方程的是[input=type:blank,size:4][/input]. 未知类型:{'options': ['[tex=8.0x1.571]SnLzj4UlSfnGqNtEzxfZSuZwslGsWxsvP2Y+yf7H578Vefe1Ol/nJT135DjkdnSNNikL3arAj80BjvPHaHCDiA==[/tex]', '[tex=10.571x1.571]JR4yrHJRIZfJXwhFSObwrfajFnWUvXzM/YiA3M6aDKuVBZ8I+7v5iXTXdA3E6Rm4vOE2BCfPwFP2rmRygXKEUDk1qLsNDCJ2p8GEbfCSr2s=[/tex]', '[tex=5.643x1.357]m0sKckxx+jZ9iltApBtB23TBISIOx/g0judcsS+akNFZrUNCq3g+BIVQwGbQEh/C[/tex]', '$y^{(4)}+5 y^{\\prime}-\\cos x=0$'], 'type': 102}