• 2022-06-10
    设f(x)具有性质:[tex=8.571x1.357]8gPeznjMnng12qtkk9Vgczii1Sh4d1qJxc9iHYT5+YI=[/tex]证明:必有f(0)=0,[tex=5.5x1.357]rt5qCY7TXHcsFUQrD44nPA==[/tex](p为任意正整数)
  • 在f(x+y)=f(x)+f(y)中,令x=0,即得f(0)=0。在f(x+y)=f(x)+f(y)中,令y=x,即得f(2x)=2f(x);在f(x+y)=f(x)+f(y)中,令y=2x,结合上式,即得f(3x)=3f(x);设对正整数k,有f(kx)=kf(x),则在f(x+y)=f(x)+f(y)中,令y=kx,结合假设有f((k+1)x)=(k+1)f(x),由数学归纳法得证.

    内容

    • 0

      【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0,    F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2,  F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0,    F(x)=0; 0≤x<2,   F(x)=1/8x³; x≥2,    F(x)=0 (3) 1/8

    • 1

      设函数f(x)在[tex=3.286x1.357]64m0xE4nFlaKGIakApV0PA==[/tex]上连续,且有f(0)=0及f'(x)单调增,证明:在[tex=3.5x1.357]vgrW1/jK/GZ1TOWaPFIQWA==[/tex]上函数[tex=5.071x2.429]KmCvFjqAEA9O51+9erVGP+KtDDqVtXZQWqxj1eiTO5k=[/tex]是单调增的。

    • 2

      有代码片段:function f(y) {var x=y*y;return x;} for(var x=0;x&lt; 5;x++) {y=f(x);document.writeln(y);}输出结果是( )。 A: 0 1 2 3 4 B: 0 1 4 9 16 C: 0 1 4 9 16 25 D: 0 1 2 3 4 5

    • 3

      设[tex=3.429x1.357]Z36AEPLbx4JfyrHPfLY1gg==[/tex]具有性质F,[tex=3.571x1.357]+06OwmLRwFoUAk4Z/SZg7Q==[/tex]具有性质G,命题“对所有x而言,若x有性质F,则x就有性质G”的符号化形式为

    • 4

      设f(x)在&#91;0,a&#93;上连续,在(0,a)内可导,且f(a)=0,证明至少存在一点[tex=3.643x1.357]lTsOOhJ85nTn3mrT2Mx0lw==[/tex]使[tex=6.286x1.429]JZ8spbP5y8lrG0FgeChLIS7LPAFOZNl0MwLjGUb1ZoE=[/tex]