设f(x)具有性质:[tex=8.571x1.357]8gPeznjMnng12qtkk9Vgczii1Sh4d1qJxc9iHYT5+YI=[/tex]证明:必有f(0)=0,[tex=5.5x1.357]rt5qCY7TXHcsFUQrD44nPA==[/tex](p为任意正整数)
举一反三
- 3.设函数$f(x)={{x}^{4}}\sin x$,则${{f}^{(9)}}(0)=$( )。 A: $\frac{9!}{5!}$ B: $\frac{5!}{9!}$ C: $\frac{1}{5!}$ D: $0$
- 证明:次数>0 且首项系数为 1 的多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是一个不可约多项式 的充分必要条件是,对任意多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]必有(f(x), g(x))=1,或者对某一正整数[tex=6.0x1.357]bR39wf/Hz75eMrt08Xqk8wt4bXTUCgLbWgBjqC5Zmko=[/tex].
- 设随机变量 $\xi$ 具有对称的密度函数 $f(x)$,即$f(x)=f(-x)$,证明对任意 $h>0,有:[tex=16.0x5.714]qlmQA1D8xtk2KTRQ/XTaGu/EiNAMcSZvQOLN/o9oTzkJDDaZqPzVFFOEYV0IlvIxg+NLbN5HBxE9HqdnYcUMk7x3J71PLc6IhnZMY4AlQxXAfAOaQfAg5wIdOMyd2MjRq5Bg1tTortQBDyYNTTp6nTzqLiGnNc7VRx/woKeV7i0=[/tex]
- 同时掷2颗均匀骰子,X表示点数大于4出现的个数,则以下结果正确的是 A: X服从二项分布 B: P(X=0)=P(X=1) C: P(X=1)=4/9 D: P(X=0)=1/9 E: P(X=2)=4/9 F: P(X>;0)=1 G: P(X<;2)=5/9 H: P(X>;1)>;0.5
- 设函数f具有一阶连续导数,f''(0)存在,且f'(0)=0,f(0)=0,[tex=11.143x2.929]FgiJWgRQAKO6KUAKNMtpr42BveQYl/ToVviQ5cCtM9wcSY0QBIbGsihuelZ2Y0bAzYEbycD2Q2vfi4GC2Ijs1kB6/BRoIojNsaonEeVPYMMzs1ywITo1iMnLUJQZym3e[/tex].(1)确定a,使得g(x)处处连续;(2)对以上所确定的a,证明g(x)具有一阶连续导数.