产生周期为1的三角波信号,正确的代码是
A: t=0:1/1000:5;y=sawtooth(2*pi*t,0.5);号,正确的代码是
B: t=0:1/1000:5;y=sawtooth(2*pi*10*t,0.5);,正确的代码是
C: t=0:1/1000:5;y=square(2*pi*t,0.5);�
D: t=0:1/1000:5;y=square(2*pi*10*t,0.5);
A: t=0:1/1000:5;y=sawtooth(2*pi*t,0.5);号,正确的代码是
B: t=0:1/1000:5;y=sawtooth(2*pi*10*t,0.5);,正确的代码是
C: t=0:1/1000:5;y=square(2*pi*t,0.5);�
D: t=0:1/1000:5;y=square(2*pi*10*t,0.5);
举一反三
- 在使用函数square产生方波信号时,下列哪个代码能够产生幅度为1的单极性,占空比为1/2,周期为8的周期方波信号。( ) A: t=-10:0.01:10; y=square(2*pi*t/4,25)/2+0.5; B: t=-10:0.01:10; y=square(2*pi*t/8,25)/2+0.5; C: t=-10:0.01:10; y=square(2*pi*t/8,50)/2+0.5; D: t=-10:0.01:10; y=square(2*pi*t/4,50)/2+0.5;
- 下列Matlab代码,能求解微分方程 y'(t) = 2*t , y(0) = 1的是( ) A: tspan = [0 5];<br> y0 = 0;<br> [t,y] = ode45(@(t,y) 2*t, tspan, y0); B: tspan = [0 5];<br>y0 = 1;<br>[t,y] = ode45(@(t,y) 2*t, tspan, y0); C: tspan = [0 5];<br>y0 = 1;<br>[t,y] = ode45(@(t,y) 2*y, tspan, y0); D: tspan = [0 5];<br>y0 = 1;<br>[t,y] = ode45(@(t,y) 2*t*y, tspan, y0);
- 已知\(L\)为圆周 \(x = a\cos t,y = a\sin t(0 \le t \le 2\pi )\),则\({\oint_L {({x^2} + {y^2})} ^n}ds{\rm{ = }}\) ( ). A: \(2\pi {a^{2n + 1}}\) B: \(2\pi {a^{2n - 1}}\) C: \(\pi {a^{2n + 1}}\) D: \(\pi {a^{2n - 1}}\)
- 计算\({\oint_L {({x^2} + {y^2})} ^n}ds\),其中\(L\)为圆周\(x = a\cos t\),\(y=asint\)\((0 \le t \le 2\pi )\)。 A: \(2\pi {a^{n + 1}}\) B: \(2\pi {a^{2n + 1}}\) C: \(\pi {a^{n + 1}}\) D: \(2\pi {a^{n + 1}}\)
- 计算曲线积分\({\oint_L {({x^2} + {y^2})} ^3}ds\),其中\(L\)为圆周\(x = a\cos t,y = a\sin t(0 \le t \le 2\pi )\)。 A: \(2\pi {a^7}\) B: \(2\pi {a^6}\) C: \(2\pi {a^5}\) D: \(2\pi {a^8}\)