• 2022-06-15
    已知\(L\)为圆周 \(x = a\cos t,y = a\sin t(0 \le t \le 2\pi )\),则\({\oint_L {({x^2} + {y^2})} ^n}ds{\rm{ = }}\) ( ).
    A: \(2\pi {a^{2n + 1}}\)
    B: \(2\pi {a^{2n - 1}}\)
    C: \(\pi {a^{2n + 1}}\)
    D: \(\pi {a^{2n - 1}}\)
  • A

    举一反三

    内容

    • 0

      旋轮线$x=a(t-\sin t),y=a(1-\cos t)$的一拱($0 \le t \le 2 \pi$)的绕$x$轴旋转得到的立体的体积为 A: $\pi a^3$ B: $\frac{32}{105} \pi a^3$ C: $\pi a^2$ D: $\frac{32}{105} \pi a^2$

    • 1

      \(已知二元函数f(x,y)=\sin{x^2y},则\frac{\partial f}{\partial x}(1,\pi)=(\,)\) A: \(\frac{\pi}{2}\) B: \(2\pi\) C: \(-2\pi\) D: \(-\frac{\pi}{2}\)

    • 2

      函数$f(x)=\arcsin(\sin x)$的傅里叶级数展开式为 A: $x$ B: $$\frac{4}{\pi}\sum_{n=0}^{\infty}\frac{(-1)^n\sin(2n+1)x}{(2n+1)^2}$$ C: $$\frac{4}{\pi}\sum_{n=1}^{\infty}\frac{(-1)^n\sin(2n+1)x}{(2n+1)^2}$$ D: $$\frac{4}{\pi}\sum_{n=1}^{\infty}\frac{(-1)^{n-1}\sin(2n+1)x}{(2n+1)^2}$$

    • 3

      计算\(\int_{\;L} {ydx + xdy} \),其中 \(L\)为圆周 \(x = R\cos t\), \(y = R\sin t\)上对应 \(t = 0\)到 \(t = {\pi \over 2}\)的一段弧。 A: -1 B: 1 C: 0 D: 2

    • 4

      \( \sin x \)的麦克劳林公式为( ). A: \( \sin x = x - { { {x^3}} \over {3!}} + { { {x^5}} \over {5!}} - \cdots + {( - 1)^n} { { {x^{2n + 1}}} \over {\left( {2n + 1} \right)!}} + o\left( { { x^{2n + 2}}} \right) \) B: \( \sin x = 1 - { { {x^2}} \over {2!}} + { { {x^4}} \over {4!}} - { { {x^6}} \over {6!}} + \cdots + {( - 1)^n} { { {x^{2n}}} \over {\left( {2n} \right)!}} + o\left( { { x^{2n + 1}}} \right) \) C: \( \sin x = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)