经过点A(3,2)的一条动直线l分别交x轴,y轴于M、N两点,O是线段MN的中点,连结OO延长至P,使|OQ|=|QP|,则点P的轨迹方程是( ).
A: xy-2x+3y=0
B: xy+2x一3y=0
C: xy-2x-3y=0
D: 2x+3y=0
E: xy+2x+3y=0
A: xy-2x+3y=0
B: xy+2x一3y=0
C: xy-2x-3y=0
D: 2x+3y=0
E: xy+2x+3y=0
举一反三
- 下列方程中( )是微分方程。 A: \( x{y^3} + 2{y^2} + {x^2}y = 0 \) B: \( {y^2} + xy - y = 0 \) C: \( x + {y^2} = 0 \) D: \( dy + ydx = 0 \)
- 分解因式()x()3()y()-()2()x()2()y()2()+()xy()3()正确的是A.()xy()(()x()+()y())()2()B.()xy()(()x()2()﹣()2()xy()+()y()2())()C.()xy()(()x()2()+2()xy()﹣()y()2())()D.()xy()(()x()﹣()y())()2
- 下列方程中,为二元一次方程的是() A: 3 x = 2 y B: 3 x ﹣ 6 = 0 C: 2 x ﹣ 3 y = xy D: x ﹣ = 0
- 设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)
- 【填空题】已知正数 x , y 满足 x 2 +2 xy -3=0, 则 2 x + y 的最小值是 ______.