函数z=f(x,y)在点(x,y)的全增量和函数z=f(x,y)在点(x,y)的全微分总是相等的
×
举一反三
- 如果函数z=f(x,y)在(x,y)处的全增量Δz=f(xΔx,yΔy)-f(x,y),可以表示为Δz=AΔxBΔyo(ρ),其中A、B不依赖于Δx,Δy,仅与x,y有关,ρ趋近于0(ρ=√[(Δx)2(Δy)2]),此时称函数z=f(x,y)在点(x,y)处可微分。
- 如果函数z=f(x,y)在点(x,y)的偏导数定存在, 则该函数在点(x,y)存在全微分
- 如果函数z=f(x, y)在点点(x, y)的偏导数存在,则函数z=f(x, y)在点(x, y)可微分
- 函数z=f(x,y)在点(x,y)处可微,则z=f(x,y)在点(x,y)处连续( )
- 【多选题】对于二元函数z=f(x,y)在点(x,y)的可导性与可微性,以下说法正确的是 (2.0分) A. 二元函数z=f(x,y)在点(x,y)的有偏导数必然导致该函数在点(x,y)处可微分; B. 二元函数z=f(x,y)在点(x,y)的偏导数全部连续必然导致该函数在点(x,y)处可微分; C. 二元函数z=f(x,y)在点(x,y)的可微分必然导致该函数在点(x,y)处有偏导数;
内容
- 0
若函数z = f (x, y)在点(x, y)处可微,则f (x, y)在该点处
- 1
【单选题】对于二元函数z=f(x,y)在点(x,y)的可导性与连续性,以下说法正确的是 (1.0分) A. z=f(x,y)在点(x,y)有偏导必然在该点连续; B. z=f(x,y)在点(x,y)连续必然在该点有偏导; C. 二元函数z=f(x,y)在点(x,y)的可导性与连续性没有关系
- 2
若函数z=f(x,y)在点(x,y)处可微分,则有[img=159x47]18032657d155ff8.png[/img]。
- 3
若函数z=f(x,y)在点(x,y)处可微分,则有[img=159x47]17de8198d68d71b.png[/img]。
- 4
设函数z=f(x,y)在点(x。,y。)处存在对x,y的偏导数,则fˊx(x。,y。)=[].