举一反三
- 判断下列命题是否为真:(1)[tex=3.643x1.357]/5abqJjwKZ1qr+6hsVFF5EBvfq3ggOFNlHMClz0h9nk=[/tex](2)[tex=2.929x1.357]rGJpyjIjJpbcoBTWxP0Jiw==[/tex](3)[tex=4.5x1.357]2wycHMoqU83MyEp17iBils58bR7YLuCTI2G9NVAdlfY=[/tex](4)[tex=5.214x1.357]CTz2gu+IIm1GgNmYMGaduCRtA41wnW4WqwRWwEhq6aA=[/tex](5)[tex=4.857x1.357]1DcE2BMMOaZhTuxR/mjgsboXxfg5ET59Dp4I/jjEDuw=[/tex](6)[tex=4.643x1.357]BSryrsQYOvTP2hTWRu6t4nAuJwlSs4L9jaq70EpB+Us=[/tex](7)若[tex=6.0x1.357]y0IZLUnBO88nR8WBZYvd7QXv5S1OMINV5cQNzPyiyAc=[/tex],则[tex=3.429x1.357]1brfPwTkVVIX4GfoMIUskA==[/tex](8)若[tex=7.643x1.357]MhLfJXZnhbXiB0x3oNtFzThV4Y1mJxe1VYr7PkJE/T6hmTD3WWp+UxbNwvUQ6DHk[/tex],则[tex=4.143x1.357]LZUA94ISo1po5HWsOVeBCjo0rMvj7uw3bGw5HiZenrI=[/tex]
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?
- 若:(1)函数 f(x)在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]有导数,而函数g(x)在此点没有导数;(2)函数f(x)和g(x)二者在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]都没有导数,可否断定它们的和[tex=7.214x1.357]oX568MWmpJJk2c1dN8FEzQ==[/tex]在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数?
- 以下生产函数,哪些呈现递增、递减或不变的规模报酬? (1) [tex=7.357x1.357]XSZKoB4IYW0Gbq0fT0VGdpSNRrjnZD2xnWmU/f2IQp4=[/tex];(2) [tex=6.143x1.429]okrkibdGbRVHrBdqyMxExPok6BrwJhbIMhhTVHL2hFY=[/tex] ;(3) [tex=5.643x1.429]WNb39kBjYbA4R0b5xpycO6BfDidhMTx+CJojlGf/sDI=[/tex] ;(4) [tex=5.714x1.429]Q1cnNTo244ZQVvSfsdGe76qdAT4+f111LLhIL1D55FU=[/tex] ;(5) [tex=6.071x1.5]dAAyESpT8Py6v5ArhYZSS1Xe6blQtgeWYyWAhAqHmXM=[/tex];(6) [tex=7.857x1.357]anw59zoD7yqd/X4i/8QKFNeAPD+1K7uzfET7zeE1EfA=[/tex](7) [tex=12.357x1.786]+PkwdonbCCj8Z9ceWnLUNRl3BL2oikAY4KmA/JNGWpzhYYTWMLiiFXC1n+tRPPVU4A8W2gY6kNpJrJFuuPY6SA==[/tex]
内容
- 0
设[tex=3.5x1.214]p0/mBzBVhi5Ov5/mBhumKg==[/tex],[tex=5.0x1.214]508LVnjuszmIOu/QrX15eQ==[/tex],[tex=4.5x1.214]/oSk5zZwf268zbEYTos6fA==[/tex]均为经过四舍五入得出的近似值,试指明它们的绝对误差 (限)与相对误差 (限)。
- 1
判断半径大小并说明原因:(1)[tex=1.071x1.0]ZIxpATrL2EWTpYe3CKPlpg==[/tex]与 [tex=1.357x1.0]LO7mudz7++HOXb8YDQ1UtQ==[/tex](2) [tex=1.286x1.0]nOvFdt4hpTubfX23eRvSvg==[/tex]与[tex=1.071x1.0]Kr2c9X1cZ4El5JSNMoM0/w==[/tex](3) [tex=1.214x1.0]Q1mlMfKWwfAuQJLgzt2cVQ==[/tex]与[tex=1.357x1.0]ovKrdUm5wnQSTfl9He3wzA==[/tex](4)[tex=1.143x1.0]8nY7k4VEnlDIEx7o05iMhQ==[/tex]与[tex=1.357x1.214]in11+JirBe0MeyXDnVwAww==[/tex](5)[tex=1.643x1.214]cIgqspnlK9Ra13rNdyZhHQ==[/tex]与[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex](6)[tex=1.929x1.143]CtrLAecFBVyCnMYbqB02Ag==[/tex]与[tex=2.0x1.214]2cEIifUWf5oYRzhjCpTV6A==[/tex](7)[tex=2.214x1.214]OdTls2gllRl/Z1zy0+35/g==[/tex]与[tex=2.071x1.214]YDXlUgl4Yvd6QFjcd0Ns2Q==[/tex](8)[tex=2.071x1.214]QvCjZKA7OQkNYccCl0MVgQ==[/tex]与[tex=1.929x1.214]GDfkuEdqfBLP2oRgr+Wojw==[/tex]
- 2
设随机变量(X,Y)的概率分布列为[img=345x154]178ab1c9ce3bc1b.png[/img]求[tex=1.571x1.0]JUrGU6ftUjxQCIr6CyfDwQ==[/tex],[tex=1.357x1.0]yL/7/hhyqgwzAX8jnIq3OQ==[/tex],[tex=4.357x1.357]LN0xwhQHSOeLwBClUlpHQw==[/tex].
- 3
若[tex=4.571x1.214]jzo+yD8020u4B4Spdmpo5CYrh0KsvLp+Zvkdv4ChVVM=[/tex]具有3 位有效数字,问[tex=0.929x1.0]l0bFUb3uhsrVT1AK0OH7PA==[/tex]的相对误差限是多?设[tex=5.357x1.5]FTlDHIE7TzVUpwxJzRN/Ow==[/tex],求[tex=2.357x1.357]kj6dXR1Dh2KMR0gbkvCvUsanRQ8oLpEiIv1qec++EjI=[/tex]的绝对误差限和相对误差限。
- 4
设I(x):x是整数;N(x):x是负数;S(x,y):y是x的平方命题“任何整数的平方非负”可表示为谓词公式 未知类型:{'options': ['[tex=11.929x1.357]Ab8zVcSaawMRd84sw7i/JAhyPtafOzIiYwAO+plGfU5YAO/QV3YAB0GXAXRhZ7CliwQzjDdB7FbEZsDooWfNcKY5XHTFYR6Idofr8S7Wax4=[/tex]', '[tex=11.214x1.357]Vs8Vcw/zPN7kvQW5F7NycC9PlK+v4vkWJ4hyjFXkOftd5yicp99G5Tnp+KzILEwlHDVGwqo5md6rK5TfGKT6pg==[/tex]', '[tex=11.214x1.357]Ab8zVcSaawMRd84sw7i/JPLc5lkPb0vCB3HAoQdCvLgUiouuuSbyQIQ62rJKADX6FQeTBBqnQa6q/6Qzw2KRYw==[/tex]', '[tex=10.929x1.357]mX5PRaABESRf9QDOAojNZuqee9gfCLdnz+se+AlyZp5SHDOcNaBoGKl0MgSjkAb89Uw7a1sL8h1OT0gFb59yAg==[/tex]'], 'type': 102}