\(设有向量组(I):\alpha_{1}=(1,0,2)^T,\alpha_{2}=(1,1,3)^T,\alpha_{3}=(1,-1,a+2)^T和向量组(II):\beta_{1}=(1,2,a+3)^T,\) \(\beta_{2}=(2,1,a+6)^T,\beta_{3}=(2,1,a+4)^T,问a为何值时,向量组(I)和向量组(II)不等价?\)______
举一反三
- 设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T,试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)不等价?
- 设(3(alpha_{1}-alpha)+2 (alpha_{2}+alpha)=5(alpha_{3}+alpha),) 试求向量` alpha=`_____,其中`alpha_{1}=(2,5,1,3)^{T}, alpha_{2}=(10,1,5,10)^{T}`,( alpha_{3}=(4,1,-1,1)^{T}。)
- 设向量组$I:\alpha_{1},\alpha_{2},...,\alpha_{r}$可由向量组$(II):\beta_{1},\beta_{2},...,\beta_{s}$ 线性表示,则以下断言正确的是( )。 A: 当$rs$ 时,向量组$(II)$ 必线性相关; B: 当$r s$ 时,向量组$(I)$ 必线性相关.
- 设向量组(alpha_{1}=(1,2,-1,0)^T,alpha_{2}=(1,1,0,2)^T,alpha_{3}=(2,1,1,a)^T,)若由(alpha_{1},alpha_{2},alpha_{3})生成的向量空间的维数为2(,)则(a)=______
- 设向量组(alpha_{1}=(1,2,-1,0)^T,alpha_{2}=(1,1,0,2)^T,alpha_{3}=(2,1,1,a)^T,)若由(alpha_{1},alpha_{2},alpha_{3})生成的向量空间的维数为2(,)则(a)=______