• 2022-10-25
    设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶正定矩阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵,证明: 存在[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶可逆矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],使得[tex=9.143x1.429]XRMmUOtjtKMyseaeIn9jPM1TnNKlMhqAAioUZ3jWn/FX+SyCCFosC01uB/CWa/Kl[/tex], 其中[tex=0.714x1.0]AiT6fhT2pvop+UvpD2oClg==[/tex]为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶对角矩阵。
  • [tex=0.929x1.214]wODoDcI0JdRXvvsgRaPfQQ==[/tex][tex=7.714x2.643]vZ0t/lnU7W9VFd9251bfkXkSa837+DowkoLndRET6RAfrtPiplSSgFjeb017XOo+[/tex][tex=5.786x1.5]4AkYPt3My4cSB19ZweqdIX21Cz86VorA04YJ3H4HK+Y=[/tex][tex=7.143x2.643]vZ0t/lnU7W9VFd9251bfkVCM3kOXp8Fh2Cw/OrgpTP66eRy+6Gt669ORvx1SzIUO[/tex][tex=16.714x6.643]MJVt0JaPPtQeUZpVlB4Ij9JzIinIyFIfN1TH9BDCND2f/fWjkMBpr8Jig3oPwraR1CVTioFoFrDaxCzHWe15gGCQ0Cz2Bl7w5bA8Scai4dev3AZtBg9hOgLF+cjYj84Um8W/tugWnAoGwkBBhx2BK7O94znr+Uz03s30QIRIB4ci/Mx1xm3bl1Cr/rSdHHu2aveEmwCc/LmnR6HPzHR4mFSfd6YAOY0Dj4N8dfJMEkkKSjDP9Ux6kwY9YYn9lXbrmFt7BazoKAAsDTq7Xzw3GA==[/tex]在正交变换[tex=2.643x1.214]6v715vdEC455DcDJQLve5Q==[/tex]下有[tex=4.929x1.5]1IFe5Z4Y60Mc26mdSv1jgS/OYq9LsnQcTJ3kfzjfDzQ=[/tex]

    举一反三

    内容

    • 0

      若矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次幂零矩阵, 即 [tex=2.786x1.0]t6ogScZVzQ6nmR7J34fx7Q==[/tex] 但 [tex=4.5x1.429]LeMsK/GHf6ch8ZOCybGouXwgjeQprbWyKA1XUXYVQGI=[/tex] 如果 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 也是同阶 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次幂零矩阵, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 相似于 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex].

    • 1

      设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 若存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex], 使 [tex=4.143x1.286]YCUl/vNcR5SNlwwslg9Jhb5CY//bqvCw+mSVvBQx12Q=[/tex] 是正定阵, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为非异阵.

    • 2

      求满足以下条件的所有[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] :[tex=3.857x1.0]tNiosWebdYcf0C8jjboJyA==[/tex].这里[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]是任意[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵

    • 3

      设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶复矩阵, 证明: 存在[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶复对称矩阵 [tex=1.929x1.214]HaUvoci5ZgMfh5niP9rsbQ==[/tex], 使得 [tex=3.071x1.0]gOXtqsUVQJgsp+QmYJZYJA==[/tex], 并且可以指定 [tex=1.929x1.214]HaUvoci5ZgMfh5niP9rsbQ==[/tex] 中任何一个为可逆矩阵.

    • 4

      设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 求证:(1) 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可逆, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为正定阵的充要条件是对所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定阵 [tex=6.571x1.357]pwQb9ceT2+qsbXbi+6dIl/jgx7HDqG8OMKcZZrhVcXy6+JovSSXitpjCbh6SDQEN[/tex](2) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为半正定阵的充要条件是对所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶半正定阵 [tex=6.571x1.357]pwQb9ceT2+qsbXbi+6dIl8wUbDZMgCOnJA1lQifZKR+Dh2C+JkyFhRzqn66dyW91[/tex]