在插值条件相同的情况下,使用Lagrange插值法和Newton插值法所得到的插值多项式不相同。
举一反三
- Newton插值法的计算量小于Lagrange插值法,Lagrange插值法的计算精度高于Newton插值法。
- 假设()互不相同,使用()Lagrange()插值方法可以求出满足插值条件()的插值多项式(),使用()Newton()插值方法可以求出满足插值条件()的多项式(),问()是否成立?为什么?
- 给定插值点(xi,fi)(i=0,1,...,n)可分别构造Lagrange插值多项式和Newton插值多项式,它们是否相同?为什么?它们各有何优点?
- 【单选题】如果改变插值节点的顺序,那么 A. Lagrange插值基函数与Newton插值基函数都不变 B. Lagrange插值基函数与Newton插值基函数都改变 C. Lagrange插值基函数不变,Newton插值基函数改变 D. Lagrange插值基函数改变,Newton插值基函数不变
- 下列哪些插值不是分段插值?() A: Newton插值 B: Lagrange插值 C: 三次样条插值 D: Hermite插值