令\(C=F^{-1}AF,C=G^{-1}BG\)则下面哪个矩阵\(M\)满足\(B = M^{-1}AM\)?
A: \(G^{-1}F\)
B: \(GF^{-1}\)
C: \(G^{-1}F^{-1}\)
D: \(FG^{-1}\)
A: \(G^{-1}F\)
B: \(GF^{-1}\)
C: \(G^{-1}F^{-1}\)
D: \(FG^{-1}\)
举一反三
- 已知$f(x),\ g(x)$互为反函数,且$f(1)=2,\ {g}'(2)=2,\ {g}''(2)=1$,则${f}''(1)=$( )。 A: $1$ B: $\frac{1}{2}$ C: $-\frac{1}{4}$ D: $-\frac{1}{8}$
- 若$(f(x),g(x))=1,(f(x),h(x))=1$,则下面结论不正确的是( )。 A: $(f(x),f(x)+g(x))=1;$ B: $(f(x),h(x)+g(x))=1;$ C: $(f(x),h(x)g(x))=1;$ D: $(f(x)g(x),f(x)+g(x))=1.$
- 【单选题】若 f ( x ) = ( x − 1 ) x 2 − 1 2 , g ( x ) = x − 1 x + 1 ,则? A. f ( x ) = g ( x ) "> f ( x ) = g ( x ) B. lim x → 1 f ( x ) = g ( x ) "> lim x → 1 f ( x ) = g ( x ) C. lim x → 1 f ( x ) = lim x → 1 g ( x ) "> lim x → 1 f ( x ) = lim x → 1 g ( x ) D. 以上等式均不成立
- 下列推导正确的是 。 A: (1) F(x)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG B: (1)F(a)→G(x) 前提引入 (2)∃x(F(x)→G(x)) (1)EG C: (1) F(a)→G(x) 前提引入 (2)∃y(F(y)→G(x)) (1)EG D: (1) F(a)→G(x) 前提引入 (2)∃xF(x)→G(x) (1)EG
- 逻辑函数 F=A⊕B⊕C,G=A⊙B⊙C,则下列说法正确的是( )。 A: F=G B: F=G' C: FG=0 D: FG=1