举一反三
- S及其S上的运算*如下定义,问各种定义下的*运算是否满足结合律、交换律,[tex=3.571x1.214]kszHJDJEc7fPVjWNcpgbLw==[/tex]中是否有幺元、零元,S中哪些元素有逆元,哪些元素没有逆元.S为[tex=0.5x1.0]LcdCy2j5rNO7dKCH5QTrlQ==[/tex] (整数集)[tex=6.071x1.143]EO+z/vXNe40aypf0UErNNA==[/tex]
- S及其S上的运算*如下定义,问各种定义下的*运算是否满足结合律、交换律,[tex=3.571x1.214]kszHJDJEc7fPVjWNcpgbLw==[/tex]中是否有幺元、零元,S中哪些元素有逆元,哪些元素没有逆元.S为[tex=0.857x1.214]ChdusW5rAupjge6v/DGHRA==[/tex] (整数集)[tex=4.643x2.286]Q8CxnFhaHcfv3ctHNq8C9+pwz9GTP1YLs1Ukoa08poU=[/tex]
- S及其S上的运算*如下定义,问各种定义下的*运算是否满足结合律、交换律,[tex=3.571x1.214]kszHJDJEc7fPVjWNcpgbLw==[/tex]中是否有幺元、零元,S中哪些元素有逆元,哪些元素没有逆元.S为[tex=0.929x1.286]9yLabwWeyn0cMD+fIBc3Rg==[/tex] (自然数集)[tex=3.643x1.214]7aGANQ5gBwupxqUQ16mcMg==[/tex]
- 设[tex=3.929x1.214]ioyZAGYGh5kE1JQWTHzO2Q==[/tex]是代数系统,[tex=0.5x0.786]4ocYMFyE/c2U+6VJoq+vww==[/tex]是[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]上的二元运算。[tex=3.071x1.214]LqjYWnihkmN9LjbNwDPqOw==[/tex],有[tex=2.929x1.0]UR5dkerhtFNdu5wKkIxjHg==[/tex]。问[tex=0.5x0.786]4ocYMFyE/c2U+6VJoq+vww==[/tex]是否满足结合律,是否满足交换律,是否有幺元,是否有零元,每个元素是否有逆元。
- 设[tex=2.571x1.357]Xinul4/MGidw2LfUeKpTzwSpL7K2uenL9W4257mfUTg=[/tex]是代数系统,[tex=0.5x0.786]4ocYMFyE/c2U+6VJoq+vww==[/tex]是[tex=0.857x1.0]HcQeTeQtUqN73yUJqDRZkQ==[/tex]上的二元运算,[tex=12.0x1.357]hgWSpsxnxXQoEbmelxn/eokPVU86it180Rj9O0WCFVJueD9PuYWTZHL63ILHZMhz[/tex][tex=11.0x1.357]C7ZVIoie2LWzRNJ20XayI+zFJBplcSf4S6RzJciShF4EiDKXA05DL/ZyZDDUHgZA[/tex],问[tex=0.5x0.786]4ocYMFyE/c2U+6VJoq+vww==[/tex]是否满足结合律,是否满足交换律,是否有幺元,是否有零元,每个元素是否有逆元。
内容
- 0
在实数集[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上定义二元运算“[tex=0.5x0.786]4ocYMFyE/c2U+6VJoq+vww==[/tex]”“[tex=0.5x0.786]ZZdfGN8ROAaru4eGZpmpGQ==[/tex]”如下:[p=align:center][tex=6.071x1.143]RIMuUyCJtoUsDrsH+bcXFg==[/tex],[tex=6.071x2.357]zODds/nkUdNVxcZJOHZHGfd/wPhowADRnvLy9IheBSc=[/tex],[tex=5.071x2.357]v0yLaFTydpdmsj6cHyNBZFqp1IrfhA32xIfI+T326ko=[/tex]试问:(1)[tex=1.571x1.0]zNx2L3qUxBa5XhC7hBXMGg==[/tex]是否满足结合律、交换律?是否有单位元及逆元?(2)[tex=1.571x1.0]OlvK0D/2mqDldWIlKVjYzw==[/tex]是否满足结合律、交换律?是否有单位元及逆元?(3)[tex=1.357x1.0]HKW4U4Wo3zA7Rq6vAaLvzQ==[/tex]是否满足结合律、交换律?是否有单位元及逆元?
- 1
设[tex=4.857x1.357]f4Yfw9LPqQjJBBtmnOJPRg==[/tex],运算[tex=1.929x1.429]nhrwiaYs0pZQ2bSyY+NxjQ==[/tex]如表[tex=1.286x1.0]iXBkE9IR343AutNo0apjiA==[/tex]所示,说明这些运算是否满足交换律,结合律.幂等律,消去律,求这些运算的单位元,零元、幂等元和所有可逆元素的逆元.[br][/br][img=460x122]178f7f3343f7ed4.png[/img]
- 2
已知集合S上运算*满足结合律与交换律,证明:对S中任意元素[tex=3.286x1.214]S1r9TKg/0CvhrA1vxbq3mQ==[/tex]有[tex=10.714x1.357]up/SydoB7fp69OFGWhuiVI+GPXkTcxiale+BLijAznFPiIn0yuhcaYtoSj3T36kJ[/tex]
- 3
Q 为有理数集, Q上运算[tex=0.5x0.786]KjUQueURJJ2Or4nlP1gSfw==[/tex] 定义为[tex=6.0x1.214]VlyaEKOQhw5iGY1GueqI1AbbXmsnSvjrokSrxzqdu0Y=[/tex]求元素a关于运算*的逆元(若存在逆元).
- 4
下列集合和运算是否构成代数系统?如果构成,说明该系统是否满足交换律﹑结合律.求出该运算的单位元,零元和所有可逆元素的逆元.[br][/br]自然数集[tex=5.286x1.214]ZyAWTyM+RYibF1Os+mbnXVyTe1jk8Z/uT++7c1hgsJJoSzxsTJCG5Z3cUtu9CIN4[/tex]